Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sadeesh K. Ramakrishnan is active.

Publication


Featured researches published by Sadeesh K. Ramakrishnan.


Gastroenterology | 2013

Endothelial PAS Domain Protein 1 Activates the Inflammatory Response in the Intestinal Epithelium to Promote Colitis in Mice

Xiang Xue; Sadeesh K. Ramakrishnan; Erik R. Anderson; Matthew Taylor; Ellen M. Zimmermann; Jason R. Spence; Sha Huang; Joel K. Greenson; Yatrik M. Shah

BACKGROUND & AIMS Hypoxic inflammation (decreased oxygen tension at sites of inflammation) is a feature of inflammatory bowel disease (IBD). The hypoxia response is mediated by the transcription factors hypoxia-inducible factor (HIF) 1α and endothelial PAS domain protein 1 (EPAS1 or HIF2α), which are induced in intestinal tissues of patients with IBD. HIF1α limits intestinal barrier dysfunction, but the role of EPAS1 has not been assessed under conditions of hypoxic inflammation or in models of IBD. METHODS Acute colitis was induced by administration of Citrobacter rodentium or dextran sulfate sodium (DSS) to transgenic hypoxia reporter mice (oxygen-dependent degradation-luciferase), mice with conditional overexpression of Epas1 (Epas1(LSL/LSL)), mice with intestinal epithelium-specific deletion of Epas1 (Epas1(ΔIE) ), or wild-type littermates (controls). Colon tissues from these mice and from patients with ulcerative colitis or Crohns disease were assessed by histologic and immunoblot analyses, immunohistochemistry, and quantitative polymerase chain reaction. RESULTS Levels of hypoxia and EPAS1 were increased in colon tissues of mice after induction of colitis and patients with ulcerative colitis or Crohns disease compared with controls. Epas1(ΔIE) mice had attenuated colonic inflammation and were protected from DSS-induced colitis. Intestine-specific overexpression of EPAS1, but not HIF-1α, led to spontaneous colitis, increased susceptibility to induction of colitis by C rodentium or DSS, and reduced survival times compared with controls. Disruption of intestinal epithelial EPAS1 attenuated the inflammatory response after administration of DSS or C rodentium, and intestine-specific overexpression of EPAS1 increased this response. We found EPAS1 to be a positive regulator of tumor necrosis factor-α production by the intestinal epithelium. Blocking tumor necrosis factor-α completely reduced hypoxia-induced intestinal inflammation. CONCLUSIONS EPAS1 is a transcription factor that activates mediators of inflammation, such as tumor necrosis factor-α, in the intestinal epithelium and promotes development of colitis in mice.


Science Signaling | 2015

Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1

Huabing Zhang; Sadeesh K. Ramakrishnan; Daniel Triner; Brook Centofanti; Dhiman Maitra; Balázs Győrffy; Judith Sebolt-Leopold; Michael K. Dame; James Varani; Dean E. Brenner; Eric R. Fearon; M. Bishr Omary; Yatrik M. Shah

In an oxygen- and nutrient-deprived environment, verteporfin kills colon cancer cells by inducing proteotoxicity. Aggregates kill cancer cells The drug verteporfin is used clinically to enhance phototherapy and may also inhibit the transcription factor YAP1, which is often active in cancers. However, Zhang et al. found a different path to toxicity for verteporfin-mediated death of colorectal cancer cells. Verteporfin triggered the accumulation of toxic amounts of protein oligomers that selectively killed colorectal cancer cells in mice and in cells cultured under hypoxic and nutrient-deprived conditions. Normal cells in culture and in tumor-adjacent tissue sections from mice cleared these aggregates through autophagy and survived. Thus, verteporfin produces tumor-selective proteotoxicity, which may be a useful therapeutic for patients with solid tumors. Yes-associated protein 1 (YAP1) is a transcriptional coactivator in the Hippo signaling pathway. Increased YAP1 activity promotes the growth of tumors, including that of colorectal cancer (CRC). Verteporfin, a drug that enhances phototherapy to treat neovascular macular degeneration, is an inhibitor of YAP1. We found that verteporfin inhibited tumor growth independently of its effects on YAP1 or the related protein TAZ in genetically or chemically induced mouse models of CRC, in patient-derived xenografts, and in enteroid models of CRC. Instead, verteporfin exhibited in vivo selectivity for killing tumor cells in part by impairing the global clearance of high–molecular weight oligomerized proteins, particularly p62 (a sequestrome involved in autophagy) and STAT3 (signal transducer and activator of transcription 3; a transcription factor). Verteporfin inhibited cytokine-induced STAT3 activity and cell proliferation and reduced the viability of cultured CRC cells. Although verteporfin accumulated to a greater extent in normal cells than in tumor cells in vivo, experiments with cultured cells indicated that the normal cells efficiently cleared verteporfin-induced protein oligomers through autophagic and proteasomal pathways. Culturing CRC cells under hypoxic or nutrient-deprived conditions (modeling a typical CRC microenvironment) impaired the clearance of protein oligomers and resulted in cell death, whereas culturing cells under normoxic or glucose-replete conditions protected cell viability and proliferation in the presence of verteporfin. Furthermore, verteporfin suppressed the proliferation of other cancer cell lines even in the absence of YAP1, suggesting that verteporfin may be effective against multiple types of solid cancers.


Molecular and Cellular Biology | 2014

Hypoxia-Inducible Factor/MAZ-Dependent Induction of Caveolin-1 Regulates Colon Permeability through Suppression of Occludin, Leading to Hypoxia-Induced Inflammation

Liwei Xie; Xiang Xue; Matthew Taylor; Sadeesh K. Ramakrishnan; Kenjiro Nagaoka; Cathy Hao; Frank J. Gonzalez; Yatrik M. Shah

ABSTRACT Caveolae are specialized microdomains on membranes that are critical for signal transduction, cholesterol transport, and endocytosis. Caveolin-1 (CAV1) is a multifunctional protein and a major component of caveolae. Cav1 is directly activated by hypoxia-inducible factor (HIF). HIFs are heterodimers of an oxygen-sensitive α subunit, HIF1α or HIF2α, and a constitutively expressed β subunit, aryl hydrocarbon receptor nuclear translocator (ARNT). Whole-genome expression analysis demonstrated that Cav1 is highly induced in mouse models of constitutively activated HIF signaling in the intestine. Interestingly, Cav1 was increased only in the colon and not in the small intestine. Currently, the mechanism and role of HIF induction of CAV1 in the colon are unclear. In mouse models, mice that overexpressed HIF1α or HIF2α specifically in intestinal epithelial cells demonstrated an increase in Cav1 gene expression in the colon but not in the duodenum, jejunum, or ileum. HIF2α activated the Cav1 promoter in a HIF response element-independent manner. myc-associated zinc finger (MAZ) protein was essential for HIF2α activation of the Cav1 promoter. Hypoxic induction of CAV1 in the colon was essential for intestinal barrier integrity by regulating occludin expression. This may provide an additional mechanism by which chronic hypoxia can activate intestinal inflammation.


Infection and Immunity | 2014

Bacterial Siderophores That Evade or Overwhelm Lipocalin 2 Induce Hypoxia Inducible Factor 1α and Proinflammatory Cytokine Secretion in Cultured Respiratory Epithelial Cells

Victoria I. Holden; Steven Lenio; Rork Kuick; Sadeesh K. Ramakrishnan; Yatrik M. Shah; Michael A. Bachman

ABSTRACT Iron is essential for many cellular processes and is required by bacteria for replication. To acquire iron from the host, pathogenic Gram-negative bacteria secrete siderophores, including enterobactin (Ent). However, Ent is bound by the host protein lipocalin 2 (Lcn2), preventing bacterial reuptake of aferric or ferric Ent. Furthermore, the combination of Ent and Lcn2 (Ent+Lcn2) leads to enhanced secretion of interleukin-8 (IL-8) compared to that induced by either stimulus alone. Modified or structurally distinct siderophores, including yersiniabactin (Ybt) and glycosylated Ent (GlyEnt, or salmochelin), deliver iron to bacteria despite the presence of Lcn2. We hypothesized that the robust immune response to Ent and Lcn2 requires iron chelation rather than the Ent+Lcn2 complex itself and also can be stimulated by Lcn2-evasive siderophores. To test this hypothesis, cultured respiratory epithelial cells were stimulated with combinations of purified siderophores and Lcn2 and analyzed by gene expression microarrays, quantitative PCR, and cytokine immunoassays. Ent caused HIF-1α protein stabilization, induced the expression of genes regulated by hypoxia-inducible factor 1α (HIF-1α), and repressed genes involved in cell cycle and DNA replication, whereas Lcn2 induced expression of proinflammatory cytokines. Iron chelation by excess Ent or Ybt significantly increased Lcn2-induced secretion of IL-8, IL-6, and CCL20. Stabilization of HIF-1α was sufficient to enhance Lcn2-induced IL-6 secretion. These data indicate that respiratory epithelial cells can respond to bacterial siderophores that evade or overwhelm Lcn2 binding by increasing proinflammatory cytokine production.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2014

Activation of HIF-1α does not increase intestinal tumorigenesis

Xiang Xue; Sadeesh K. Ramakrishnan; Yatrik M. Shah

The hypoxic response is mediated by two transcription factors, hypoxia-inducible factor (HIF)-1α and HIF-2α. These highly homologous transcription factors are induced in hypoxic foci and regulate cell metabolism, angiogenesis, cell proliferation, and cell survival. HIF-1α and HIF-2α are activated early in cancer progression and are important in several aspects of tumor biology. HIF-1α and HIF-2α have overlapping and distinct functions. In the intestine, activation of HIF-2α increases inflammation and colon carcinogenesis in mouse models. Interestingly, in ischemic and inflammatory diseases of the intestine, activation of HIF-1α is beneficial and can reduce intestinal inflammation. HIF-1α is a critical transcription factor regulating epithelial barrier function following inflammation. The beneficial value of pharmacological agents that chronically activate HIF-1α is decreased due to the tumorigenic potential of HIFs. The present study tested the hypothesis that chronic activation of HIF-1α may enhance colon tumorigenesis. Two models of colon cancer were assessed, a sporadic and a colitis-associated colon cancer model. Activation of HIF-1α in intestinal epithelial cells does not increase carcinogenesis or progression of colon cancer. Together, the data provide proof of principle that pharmacological activation of HIF-1α could be a safe therapeutic strategy for inflammatory bowel disease.


Cell Metabolism | 2016

Iron Uptake via DMT1 Integrates Cell Cycle with JAK-STAT3 Signaling to Promote Colorectal Tumorigenesis.

Xiang Xue; Sadeesh K. Ramakrishnan; Kevin Weisz; Daniel Triner; Liwei Xie; Durga Attili; Asha Pant; Balázs Győrffy; Mingkun Zhan; Christin Carter-Su; Karin M. Hardiman; Thomas D. Wang; Michael K. Dame; James Varani; Dean E. Brenner; Eric R. Fearon; Yatrik M. Shah

Dietary iron intake and systemic iron balance are implicated in colorectal cancer (CRC) development, but the means by which iron contributes to CRC are unclear. Gene expression and functional studies demonstrated that the cellular iron importer, divalent metal transporter 1 (DMT1), is highly expressed in CRC through hypoxia-inducible factor 2α-dependent transcription. Colon-specific Dmt1 disruption resulted in a tumor-selective inhibitory effect of proliferation in mouse colon tumor models. Proteomic and genomic analyses identified an iron-regulated signaling axis mediated by cyclin-dependent kinase 1 (CDK1), JAK1, and STAT3 in CRC progression. A pharmacological inhibitor of DMT1 antagonized the ability of iron to promote tumor growth in a CRC mouse model and a patient-derived CRC enteroid orthotopic model. Our studies implicate a growth-promoting signaling network instigated by elevated intracellular iron levels in tumorigenesis, offering molecular insights into how a key dietary component may contribute to CRC.


Critical Care Medicine | 2014

Activation of hypoxia-inducible factor-1α in type 2 alveolar epithelial cell is a major driver of acute inflammation following lung contusion.

Madathilparambil V. Suresh; Sadeesh K. Ramakrishnan; Bivin Thomas; David Machado-Aranda; Yu Bi; Nicholas Talarico; Erik R. Anderson; Shah M. Yatrik; Krishnan Raghavendran

Objective:Lung contusion is a major risk factor for the development of acute respiratory distress syndrome. Hypoxia-inducible factor-1&agr; is the primary transcription factor that is responsible for regulating the cellular response to changes in oxygen tension. We set to determine if hypoxia-inducible factor-1&agr; plays a role in the pathogenesis of acute inflammatory response and injury in lung contusion. Design:Nonlethal closed-chest unilateral lung contusion was induced in a hypoxia reporter mouse model and type 2 cell–specific hypoxia-inducible factor-1&agr; conditional knockout mice. The mice were killed at 5-, 24-, 48-, and 72-hour time points, and the extent of systemic and tissue hypoxia was assessed. In addition, injury and inflammation were assessed by measuring bronchoalveolar lavage cells (flow cytometry and cytospin), albumin (permeability injury), and cytokines (inflammation). Isolated type 2 cells from the hypoxia-inducible factor-1&agr; conditional knockout mice were isolated and evaluated for proinflammatory cytokines following lung contusion. Finally, the role of nuclear factor-&kgr;B and interleukin-1&bgr; as intermediates in this interaction was studied. Results:Lung contusion induced profound global hypoxia rapidly. Increased expression of hypoxia-inducible factor-1&agr; from lung samples was observed as early as 60 minutes, following the insult. The extent of lung injury following lung contusion was significantly reduced in conditional knockout mice at all the time points, when compared with the wild-type littermate mice. Release of proinflammatory cytokines, such as interleukin-1&bgr;, interleukin-6, macrophage inflammatory protein-2, and keratinocyte chemoattractant, was significantly lower in conditional knockout mice. These actions are in part mediated through nuclear factor-&kgr;B. Hypoxia-inducible factor-1&agr; in lung epithelial cells was shown to regulate interleukin-1&bgr; promoter activity. Conclusion:Activation of hypoxia-inducible factor-1&agr; in type 2 cell is a major driver of acute inflammation following lung contusion.


eLife | 2016

Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis

Seung Hyun Ro; Xiang Xue; Sadeesh K. Ramakrishnan; Chun Seok Cho; Sim Namkoong; Insook Jang; Ian A. Semple; Allison Ho; Hwan Woo Park; Yatrik M. Shah; Jun Hee Lee

The mTOR complex 1 (mTORC1) and endoplasmic reticulum (ER) stress pathways are critical regulators of intestinal inflammation and colon cancer growth. Sestrins are stress-inducible proteins, which suppress both mTORC1 and ER stress; however, the role of Sestrins in colon physiology and tumorigenesis has been elusive due to the lack of studies in human tissues or in appropriate animal models. In this study, we show that human SESN2 expression is elevated in the colon of ulcerative colitis patients but is lost upon p53 inactivation during colon carcinogenesis. In mouse colon, Sestrin2 was critical for limiting ER stress and promoting the recovery of epithelial cells after inflammatory injury. During colitis-promoted tumorigenesis, Sestrin2 was shown to be an important mediator of p53’s control over mTORC1 signaling and tumor cell growth. These results highlight Sestrin2 as a novel tumor suppressor, whose downregulation can accelerate both colitis and colon carcinogenesis. DOI: http://dx.doi.org/10.7554/eLife.12204.001


Scientific Reports | 2016

Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion.

Hiroyuki Mori; Yao Yao; Brian S. Learman; Kazuhiko Kurozumi; Joji Ishida; Sadeesh K. Ramakrishnan; Katherine A. Overmyer; Xiang Xue; William P. Cawthorn; Michael A. Reid; Matthew Taylor; Xiaomin Ning; Yatrik M. Shah; Ormond A. MacDougald

Changes in cellular oxygen tension play important roles in physiological processes including development and pathological processes such as tumor promotion. The cellular adaptations to sustained hypoxia are mediated by hypoxia-inducible factors (HIFs) to regulate downstream target gene expression. With hypoxia, the stabilized HIF-α and aryl hydrocarbon receptor nuclear translocator (ARNT, also known as HIF-β) heterodimer bind to hypoxia response elements (HREs) and regulate expression of target genes. Here, we report that WNT11 is induced by hypoxia in many cell types, and that transcription of WNT11 is regulated primarily by HIF-1α. We observed induced WNT11 expression in the hypoxic area of allograft tumors. In addition, in mice bearing orthotopic malignant gliomas, inhibition with bevacizumab of vascular endothelial growth factor, which is an important stimulus for angiogenesis, increased nuclear HIF-1α and HIF-2α, and expression of WNT11. Gain- and loss-of-function approaches revealed that WNT11 stimulates proliferation, migration and invasion of cancer-derived cells, and increases activity of matrix metalloproteinase (MMP)-2 and 9. Since tumor hypoxia has been proposed to increase tumor aggressiveness, these data suggest WNT11 as a possible target for cancer therapies, especially for tumors treated with antiangiogenic therapy.


Annual Review of Physiology | 2016

Role of Intestinal HIF-2α in Health and Disease

Sadeesh K. Ramakrishnan; Yatrik M. Shah

The intestine is supported by a complex vascular system that undergoes dynamic and transient daily shifts in blood perfusion, depending on the metabolic state. Moreover, the intestinal villi have a steep oxygen gradient from the hypoxic epithelium adjacent to the anoxic lumen to the relative higher tissue oxygenation at the base of villi. Due to the daily changes in tissue oxygen levels in the intestine, the hypoxic transcription factors hypoxia-inducible factor (HIF)-1α and HIF-2α are essential in maintaining intestinal homeostasis. HIF-2α is essential in maintaining proper micronutrient balance, the inflammatory response, and the regenerative and proliferative capacity of the intestine following an acute injury. However, chronic activation of HIF-2α leads to enhanced proinflammatory response, intestinal injury, and colorectal cancer. In this review, we detail the major mechanisms by which HIF-2α contributes to health and disease of the intestine and the therapeutic implications of targeting HIF-2α in intestinal diseases.

Collaboration


Dive into the Sadeesh K. Ramakrishnan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang Xue

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Frank J. Gonzalez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge