Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sadi Köksoy is active.

Publication


Featured researches published by Sadi Köksoy.


BMC Cancer | 2005

Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

Ahter Dilsad Sanlioglu; Ercument Dirice; Cigdem Aydin; Nuray Erin; Sadi Köksoy; Salih Sanlioglu

BackgroundTumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA) were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL).MethodsTRAIL sensitivity assays were conducted using Molecular Probes Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells.ResultsMCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4) expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3) on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells displayed very low levels of surface TRAIL-R4 expression. Furthermore, a DcR2 siRNA approach lowered TRAIL-R4 expression on surface and this sensitized MCF7 cells to TRAIL.ConclusionThe expression of TRAIL-R4 decoy receptor appeared to be well correlated with TRAIL resistance encountered in breast cancer cells. Both adenovirus mediated IKKβKA expression and a DcR2 siRNA approach sensitized MCF7 breast cancer cells to TRAIL.


General and Comparative Endocrinology | 2015

Estrogen-induced yolk precursors in European sea bass, Dicentrarchus labrax: Status and perspectives on multiplicity and functioning of vitellogenins.

Ozlem Yilmaz; Francisco Prat; Antonio José Ibañez; Haruna Amano; Sadi Köksoy; Craig V. Sullivan

The estrogen-inducible egg yolk precursor, vitellogenin, of the European sea bass (Dicentrarchus labrax) has received considerable scientific attention by virtue of its central importance in determination of oocyte growth and egg quality in this important aquaculture species. However, the multiplicity of vitellogenins in the sea bass has only recently been examined. Recent cloning and homology analyses have revealed that the sea bass possesses the three forms of vitellogenin, VtgAa, VtgAb and VtgC, reported to occur in some other highly evolved teleosts. Progress has been made in assessing the relative abundance and special structural features of the three Vtgs and their likely roles in oocyte maturation and embryonic nutrition. This report discusses these findings in the context of our prior knowledge of vitellogenesis in this species and of the latest advances in our understanding of the evolution and function of multiple Vtgs in acanthomorph fishes.


Human Immunology | 2013

Regulatory T cells in cancer: An overview and perspectives on Cyclooxygenase-2 and Foxp3 DNA methylation

Mehmet Sahin; Emel Sahin; Sadi Köksoy

Epigenetics has been gaining great attention as a therapeutic target in cancer. The cancer genome usually contains both hyper- and hypo-methylated genes to increase invasion, proliferation and metastasis. These cells not only operate their own growth, but also develop various strategies to escape from immune surveillance, and for this aim, regulatory T (Treg) cells support the cancer-mediated immune suppression. The fate of Treg cells is mainly controlled by DNA methylation within the promoter and intronic regions of Foxp3 gene. Foxp3 transcription factor is involved in the development, differentiation and function of Treg cells. COX-2 is also an epigenetically controlled gene in these processes. This enzyme and its product PGE2 plays essential roles in Treg functionality in cancer. Here, we discuss the effects of DNA methylation on cancer and nTreg cells. We also summarize the mechanisms related with COX-2/PGE2 and Foxp3 on inhibitory function of Treg cells in cancer.


Pediatric Infectious Disease Journal | 2016

Successful Granulocyte Colony-stimulating Factor Treatment of Relapsing Candida albicans Meningoencephalitis Caused by CARD9 Deficiency.

Fatih Çelmeli; Nefise Oztoprak; Doga Turkkahraman; Derya Seyman; Esvet Mutlu; Natalie Frede; Sadi Köksoy; Bodo Grimbacher

Caspase-associated recruitment domain-9 (CARD9) deficiency is an autosomal-recessive primary immunodeficiency with genetic defects in Th17 immunity marked by susceptibility to recurrent and invasive Candida infections. We present a case of relapsing Candida albicans meningoencephalitis over 1-year period despite appropriate antifungal therapy. We detected a homozygous p.Q295X mutation in CARD9 as well as a defective interleukin-17 and interferon gamma synthesis in Enzyme-Linked ImmunoSpot tests. We achieved complete clinical remission, and improvement of interleukin-17 secretion with subcutaneous granulocyte colony-stimulating factor) treatment.


Acta Histochemica | 2014

Characterization of colony-forming cells in adult human articular cartilage.

Ozlem Ozbey; Zeliha Sahin; Nuray Acar; Filiz Tepekoy Ozcelik; Alpay Merter Ozenci; Sadi Köksoy; Ismail Ustunel

Recent studies have shown that adult human articular cartilage contains stem-like cells within the native structure. In this study, we aimed to determine the localization of putative stem cell markers such as CD90, STRO-1, OCT-3/4, CD105 and CD166 in adult human articular cartilage tissue sections and demonstrate the expression of these markers within the expanded surface zone colony-forming (CF) cells and evaluate their differentiation potential. Biopsy samples were either fixed immediately for immunohistochemical analyses or processed for in vitro cell culture. Immunohistochemical and flow cytometry analyses were performed by using CD90, STRO-1, OCT-3/4, CD105 and CD166 antibodies. Isolated colony-forming (CF) cells were further stimulated, by using the appropriate growth factors in their pellet culture, to obtain cartilage, bone and adipose lineages. We observed that the expression of the stem cell markers were in various zones of the human adult cartilage. Flow cytometry results showed that in CF cells the expression of CD90 and CD166 was high, while OCT-3/4 was low. We also determined that CF cells could be stimulated towards cartilage, bone and adipose lineages. The results of this research support the idea that the resident stem-like cells in adult human articular cartilage express these putative stem cell markers, but further experimental investigations are needed to determine the precise localization of these cells.


Pediatric Neurology | 2013

The Effects of Intraperitoneal Pentoxifylline Treatment in Rat Pups With Hypoxic-Ischemic Encephalopathy

Salih Kalay; Osman Öztekin; Gönül Tezel; Hakan Aldemir; Emel Sahin; Sadi Köksoy; Mustafa Akcakus; Nihal Oygür

BACKGROUND The aim of this study was to evaluate the effects of postischemic treatment with pentoxifylline on the cytokine gene expressions and neuronal apoptosis in neonatal rat model of hypoxic-ischemic encephalopathy. METHODS Seven-day-old Wistar rat pups (n = 40) of either sex, delivered spontaneously, were used in this experimental study. Control group (n = 8): after median neck incision was made, neither ligation nor hypoxia was performed, ischemia group (n = 16): 0.5 mL of saline was injected intraperitoneally immediately after hypoxia. Pentoxifylline and ischemia groups (n = 16): the rat pups were administered intraperitoneally 60 mg/kg of pentoxifylline immediately after hypoxia. Eight rats from ischemia and pentoxifylline + ischemia groups were sacrificed 4 and 24 hours after drug administration. Control group mice were decapitated 4 hours after hypoxia. Caspase-3 activity, interleukin-1β, and tumor necrosis factor-α messenger RNA expression levels were studied in the left half of the brain. RESULTS Induction of cerebral ischemia increased tumor necrosis factor-α and interleukin-1β messenger RNA expression levels significantly at 4 hours and 24 hours following ischemia in the left ischemic hemispheres in the ischemia group as compared with the control group. Systemic administration of pentoxifylline immediately after hypoxic-ischemic encephalopathy significantly reduced the tumor necrosis factor-α and interleukin-1β messenger RNA expression levels in ischemic tissue as compared with the ischemia group. Caspase-3 activities in the left half of the brains of ischemia group were found to be increased significantly as compared with control group. Caspase-3 activities in the brains of pentoxifylline + ischemia groups were significantly lower than in that of ischemia group. CONCLUSIONS Based on the significantly lower interleukin-1β and tumor necrosis factor-α gene expression measured after 4 and 24 hours and significantly reduced caspase-3 activity measured colorimetrically in the animals treated with pentoxifylline, our findings suggest that pentoxifylline may reduce brain damage due to hypoxic-ischemic injury.


Comparative Biochemistry and Physiology B | 2016

Multiple vitellogenins and product yolk proteins in European sea bass (Dicentrarchus labrax): Molecular characterization, quantification in plasma, liver and ovary, and maturational proteolysis

Ozlem Yilmaz; Francisco Prat; Antonio José Ibáñez; Sadi Köksoy; Haruna Amano; Craig V. Sullivan

Three complete vitellogenin (Vtg) polypeptides of European sea bass (Dicentrarchus labrax), an acanthomorph teleost spawning pelagic eggs in seawater, were deduced from cDNA and identified as VtgAa, VtgAb and VtgC based on current Vtg nomenclature and phylogeny. Label free quantitative mass spectrometry verified the presence of the three sea bass Vtgs or their product yolk proteins (YPs) in liver, plasma and ovary of postvitellogenic females. As evidenced by normalized spectral counts, VtgAb-derived protein was 2- to 5-fold more abundant, depending on sample type, than for VtgAa, while VtgC-derived protein was less abundant, albeit only 3-fold lower than for VtgAb in the ovary. Western blotting with Vtg type-specific antisera raised against corresponding gray mullet (Mugil cephalus) lipovitellins (Lvs) detected all three types of sea bass Vtg in the blood plasma of gravid females and/or estrogenized males and showed that all three forms of sea bass Lv undergo limited partial degradation during oocyte maturation. The comparatively high levels of VtgC-derived YPs in fully-grown oocytes and the maturational proteolysis of all three types of Lv differ from what has been reported for other teleosts spawning pelagic eggs in seawater but are similar to recent findings for two species of North American Moronidae, the striped bass (Morone saxatilis) and white perch (Morone americana), which spawn pelagic and demersal eggs, respectively in fresh water. Together with the high Vtg sequence homologies and virtually identical structural features of each type of Vtg between species, these findings indicate that the moronid multiple Vtg systems do not substantially vary with reproductive environment.


Experimental and Therapeutic Medicine | 2014

Role of immunoglobulin in neuronal apoptosis in a neonatal rat model of hypoxic ischemic brain injury

Salih Kalay; Osman Öztekin; Gönül Tezel; Hakan Aldemir; Emel Sahin; Sadi Köksoy; Mustafa Akcakus; Nihal Oygür

The objective of the present study was to evaluate the neuroprotective effects of immunoglobulin (Ig) in a neonatal hypoxic ischemic (HI) rat model. Seven-day-old rat pups were randomly assigned to control, hypoxia and hypoxia + Ig groups. The rats in the hypoxia +Ig group were intraperitoneally administered 1 g/kg Ig once, immediately after hypoxia. Saline was administered to the rats in the hypoxia group at the same time point. Eight rats from each of the Ig + hypoxia and hypoxia groups were sacrificed by decapitation 4 and 24 h following the administration of Ig or saline. The rats of the control group were sacrificed at the 4 h time-point. Caspase-3 activity, as well as IL-1β, IL-6 and TNF-α mRNA expression levels, were studied in the left ischemic hemispheres. Induction of cerebral ischemia increased the TNF-α, IL-6 and IL-1β mRNA expression levels significantly at 4 and 24 h in the left ischemic hemispheres in the hypoxia group compared with those in the control group. The systemic administration of Ig following HI encephalopathy significantly reduced the TNF-α, IL-6 and IL-1β mRNA expression levels in the ischemic tissue in the Ig + hypoxia group compared with those in the hypoxia group. In the hypoxia group, caspase-3 activity in the left half of the brain was found to be significantly increased compared with that in the control group. Caspase-3 activity in the Ig + hypoxia group was significantly lower than that in the hypoxia group. The observations of the present study indicate that Ig administration may be an efficient treatment approach for reducing cerebral apoptosis associated with hypoxic ischemia.


Brain Behavior and Immunity | 2015

Activation of neuroimmune pathways increases therapeutic effects of radiotherapy on poorly differentiated breast carcinoma

Nuray Erin; Aylin Fidan Korcum; Gamze Tanriover; Şule Kale; Necdet Demir; Sadi Köksoy

Recent studies document the importance of neuronal dysfunction in cancer development and metastasis. We reported previously that both depletion of neuropeptides in capsaicin-sensitive sensory nerve endings and vagotomy increases metastasis of triple negative breast carcinoma. Of the sensory neuropeptides, Substance P (SP) is distributed widely for regulation of immune functions. We therefore examined the affects of continuous exposure to low doses of SP on brain metastatic cells of the mouse breast carcinoma (4TBM) in the presence of radiotherapy (RT) thought to increase antigenicity of cancer cells. 4TBM cells have a cancer stem cell phenotype and induce extensive visceral metastasis after orthotopic inoculation into the mammary pad. Results demonstrated that SP treatment decreases the number of tumor-infiltrating myeloid-derived suppressor cells as well as the TNF-α response to LPS challenge. SP also increased CD4+Cd25(bright) cells in draining lymph nodes of tumor-bearing animals and IFN-γ secretion from leukocyte culture prepared from lymph nodes and spleens of tumor-bearing animals. SP also prevented tumor-induced degeneration of sensory nerve endings and altered release of angiogenic factors from cancer-associated fibroblasts (CAF) and tumor explants. In accordance with these observed immunological effects, combination treatment of continuous SP with a single dose of RT induced complete tumor regression and significantly reduced or prevented metastasis in 50% of the animals while suppressing primary tumor growth and metastasis in the remaining mice. These original findings demonstrate that SP through neuroimmune modulation can prevent formation of immune suppression in the tumor microenvironment, enhance cytotoxic immunity in the presence of RT and prevent metastatic growth.


Medicine | 2016

Local Immune Response in Helicobacter pylori Infection.

Derya Kivrak Salim; Mehmet Sahin; Sadi Köksoy; Haydar Adanir; Inci Suleymanlar

Abstract There have been few studies concerning the cytokine profiles in gastric mucosa of Helicobacter pylori–infected patients with normal mucosa, chronic gastritis, and gastric carcinoma (GAC). In the present study, we aimed to elucidate the genomic expression levels and immune pathological roles of cytokines—interferon (IFN)-&ggr;, tumor necrosis factor (TNF)-&agr;, interleukin (IL)-4, IL-6, IL-10, transforming growth factor (TGF)-&bgr;, IL-17A, IL-32—in H pylori–infected patients with normal gastric mucosa (NGM; control), chronic active gastritis (CAG), and GAC. Genomic expression levels of these cytokines were assayed by real-time PCR analysis in gastric biopsy specimens obtained from 93 patients. We found that the genomic expression levels of IFN-&ggr;, TNF-&agr;, IL-6, IL-10, IL-17A mRNA were increased in the CAG group and those of TNF-&agr;, IL-6, IL-10, IL-17A, TGF-&bgr; mRNA were increased in the GAC group with reference to H pylori–infected NGM group. This study is on the interest of cytokine profiles in gastric mucosa among individuals with normal, gastritis, or GAC. Our findings suggest that the immune response of gastric mucosa to infection of H pylori differs from patient to patient. For individual therapy, levels of genomic expression of IL-6 or other cytokines may be tracked in patients.

Collaboration


Dive into the Sadi Köksoy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge