Sadie L. Hebert
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sadie L. Hebert.
Mechanisms of Ageing and Development | 2010
Sadie L. Hebert; Ian R. Lanza; K. Sreekumaran Nair
Oxidative damage to mitochondrial DNA increases with aging. This damage has the potential to affect mitochondrial DNA replication and transcription which could alter the abundance or functionality of mitochondrial proteins. This review describes mitochondrial DNA alterations and changes in mitochondrial function that occur with aging. Age-related alterations in mitochondrial DNA as a possible contributor to the reduction in mitochondrial function are discussed.
Experimental Cell Research | 2011
Kristen M. Kallestad; Sadie L. Hebert; Abby A. McDonald; Mark L. Daniel; Sharon R. Cu; Linda K. McLoon
The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin(-/-) (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation of mpcs, the EOMCD34 cells, that are retained in significantly higher percentages in normal, mdx and DKO mice EOM, appear to be resistant to elevated levels of oxidative stress and toxins, and actively proliferate throughout life. Current studies are focused on further defining the EOMCD34 cell subtype molecularly, with the hopes that this may shed light on a cell type with potential therapeutic use in patients with sarcopenia, cachexia, or muscular dystrophy.
Clinical Nutrition | 2010
Sadie L. Hebert; K. Sreekumaran Nair
Profound metabolic changes occur in people with type 1 diabetes mellitus during insulin deprivation. These include an increase in basal energy expenditure and reduced mitochondrial function. In addition, protein metabolism is significantly affected during insulin deprivation. A greater increase in whole-body protein breakdown than protein synthesis occurs resulting in a net protein loss. During insulin deprivation the splanchnic bed has a net protein accretion which accounts for the total increase in whole-body protein synthesis while muscle is in a net catabolic state.
Experimental Biology and Medicine | 2003
Ruth B. S. Harris; Tiffany D. Mitchell; Sadie L. Hebert
Female C57BL/6J mice were adapted to 10% or 45% kcal fat diets for 8 weeks. Continuous intraperitoneal infusion of 10 μg of leptin/day from a miniosmotic pump transiently inhibited food intake in low fat-fed but not high fat-fed mice. In contrast, both low and high fat-fed leptin-infused mice were less fat than their phosphate-buffered saline (PBS) controls after 13 days. Leptin infusion inhibited insulin release but did not change glucose clearance in low fat-fed mice during a glucose tolerance test. A single intraperitoneal injection of 30 μg of leptin inhibited 24-hr energy intake and inhibited weight gain in both low and high fat-fed mice. Insulin responsiveness was improved in high fat-fed mice during an insulin sensitivity test due to an exaggerated elevation of circulating insulin concentrations. Thus, leptin infusion reduced adiposity independently of energy intake in high fat-fed mice and improved insulin sensitivity in low fat-fed mice, whereas leptin injections, which produced much greater, but transient, increases in serum leptin concentration, inhibited energy intake in both low and high fat-fed mice.
Physiology & Behavior | 2002
Ruth B. S. Harris; Jun Zhou; Tiffany D. Mitchell; Sadie L. Hebert; Donna H. Ryan
Repeated restraint stress (3 h/day for 3 days) causes a chronic down-regulation of body weight in rats. This study determined whether weight loss was influenced by the time of day that rats had access to food or that stress was applied. Groups of male Sprague-Dawley rats were fed a 40% kcal fat diet with food given ad libitum, only during the light phase or only during the dark phase. After 2 weeks of adaptation, rats within each feeding treatment were divided into four groups. One was exposed to repeated restraint at the start of the light phase, another was restrained at the start of the dark phase and the remaining groups were nonstressed controls for restrained rats. Body weight was significantly reduced in ad libitum- and dark-fed restrained rats, compared with nonstressed controls, from Day 2 of restraint, regardless of the time of day that they were stressed. There was no significant effect of restraint on weight change of light-fed rats. Food intake was inhibited by stress in ad libitum- and dark-fed rats, but it was not changed in light-fed rats. Serum corticosterone was increased by restraint in all rats irrespective of feeding schedule. This study demonstrates that stress-induced weight loss only occurs when rats have food available during their normal feeding period (dark phase) and is not determined by increased corticosterone release.
Brain Research | 2004
Gerlinda E. Hermann; Sadie L. Hebert; Montina J. Van Meter; Gregory M. Holmes; Richard C. Rogers
Tumor necrosis factor alpha (TNF(alpha)) is a potent modulator of autonomic reflex mechanisms that control the stomach. Evidence suggests that TNF(alpha) action directly on vago-vagal reflex control circuits causes the autonomic misregulation of digestion manifested as gastrointestinal stasis, nausea, and emesis associated with illness. Neurophysiological studies indicated that TNF(alpha) may have effects on vagal afferents in the solitary nucleus, as well as neurons of the solitary nucleus (NST) and dorsal motor nucleus (DMN) of the vagus. The aim of this study was to determine the location of the TNFR1 receptor (p55) in the medulla using immunocytochemical methods. We devised a technique for localizing the p55 receptor using heat-induced antigen recovery in fixed tissue sections. This protocol allowed us to demonstrate that dense p55-immunoreactivity (p55-ir) is constitutively present on central (but not peripheral) vagal afferents in the solitary tract (ST) and nucleus; p55-ir is also present on afferents entering the spinal trigeminal nucleus. Unilateral supra-nodose vagotomy eliminated p55-ir from ipsilateral central vagal afferents. Virtually all neurons in the brainstem appeared to express p55-ir at a low level, i.e., just above background. However, vagotomy caused a dramatic up-regulation of p55-ir in vagal motor neurons. This increase in p55-ir in axotomized neurons may play a pivotal role in the connection between the occurrence of the injury and the initiation of apoptotic processes resulting in elimination of damaged neurons.
PLOS ONE | 2013
Sadie L. Hebert; Mark L. Daniel; Linda K. McLoon
Many differences exist between extraocular muscles (EOM) and non-cranial skeletal muscles. One striking difference is the sparing of EOM in various muscular dystrophies compared to non-cranial skeletal muscles. EOM undergo continuous myonuclear remodeling in normal, uninjured adults, and distinct transcription factors are required for the early determination, development, and maintenance of EOM compared to limb skeletal muscle. Pitx2, a bicoid-like homeobox transcription factor, is required for the development of EOM and the maintenance of characteristic properties of the adult EOM phenotype, but is not required for the development of limb muscle. We hypothesize that these unique properties of EOM contribute to the constitutive differences between EOM and non-craniofacial skeletal muscles. Using flow cytometry, CD34+/Sca1−/CD45−/CD31− cells (EECD34 cells) were isolated from extraocular and limb skeletal muscle and in vitro, EOM EECD34 cells proliferated faster than limb muscle EECD34 cells. To further define these myogenic precursor cells from EOM and limb skeletal muscle, they were analyzed for their expression of Pitx2. Western blotting and immunohistochemical data demonstrated that EOM express higher levels of Pitx2 than limb muscle, and 80% of the EECD34 cells expressed Pitx2. siRNA knockdown of Pitx2 expression in EECD34 cells in vitro decreased proliferation rates and impaired the ability of EECD34 cells to fuse into multinucleated myotubes. High levels of Pitx2 were retained in dystrophic and aging mouse EOM and the EOM EECD34 cells compared to limb muscle. The differential expression of Pitx2 between EOM and limb skeletal muscle along with the functional changes in response to lower levels of Pitx2 expression in the myogenic precursor cells suggest a role for Pitx2 in the maintenance of constitutive differences between EOM and limb skeletal muscle that may contribute to the sparing of EOM in muscular dystrophies.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2015
Sadie L. Hebert; Perrine Marquet-De Rougé; Ian R. Lanza; Shelly K. McCrady-Spitzer; James A. Levine; Sumit Middha; Rickey E. Carter; Katherine A. Klaus; Terry M. Therneau; W. Edward Highsmith; K. Sreekumaran Nair
Decline in mitochondrial DNA (mtDNA) copy number, function, and accumulation of mutations and deletions have been proposed to contribute to age-related physical decline, based on cross sectional studies in genetically unrelated individuals. There is wide variability of mtDNA and functional measurements in many population studies and therefore we assessed mitochondrial function and physical function in 18 families of grandmothers, mothers, and daughters who share the same maternally inherited mtDNA sequence. A significant age-related decline in mtDNA copy number, mitochondrial protein expression, citrate synthase activity, cytochrome c oxidase content, and VO2 peak were observed. Also, a lower abundance of SIRT3, accompanied by an increase in acetylated skeletal muscle proteins, was observed in grandmothers. Muscle tissue-based full sequencing of mtDNA showed greater than 5% change in minor allele frequency over a lifetime in two locations, position 189 and 408 in the noncoding D-loop region but no changes were noted in blood cells mtDNA. The decline in oxidative capacity and muscle function with age in three generations of women who share the same mtDNA sequence are associated with a decline in muscle mtDNA copy number and reduced protein deacetylase activity of SIRT3.
Physiological Reports | 2015
Abby A. McDonald; Sadie L. Hebert; Matthew D. Kunz; Steven Ralles; Linda K. McLoon
The mdx mouse model of Duchenne muscular dystrophy (DMD) is used to study disease mechanisms and potential treatments, but its pathology is less severe than DMD patients. Other mouse models were developed to more closely mimic the human disease based on knowledge that upregulation of utrophin has a protective effect in mdx muscle. An mdx:utrophin−/− (dko) mouse was created, which had a severe disease phenotype and a shortened life span. An mdx:utrophin+/− mouse was also created, which had an intermediate disease phenotype compared to the mdx and dko mice. To determine the usefulness of mdx:utrophin+/− mice for long‐term DMD studies, limb muscle pathology and function were assessed across the life span of wild‐type, mdx, mdx:utrophin+/−, and dko mice. Muscle function assessment, specifically grip duration and rotarod performance, demonstrated that mdx:utrophin+/− mice were weaker for a longer time than mdx mice. Mean myofiber area was smaller in mdx:utrophin+/− mice compared to mdx mice at 12 months. Mdx:utrophin+/− mice had a higher percentage of centrally nucleated myofibers compared to mdx mice at 6 and 12 months. Collagen I and IV density was significantly higher in mdx:utrophin+/− muscle compared to mdx at most ages examined. Generally, mdx:utrophin+/− mice showed an intermediate disease phenotype over a longer time course compared to the mdx and dko mice. While they do not genetically mirror human DMD, mdx:utrophin+/− mice may be a more useful animal model than mdx or dko mice for investigating long‐term efficacy of potential treatments when fibrosis or muscle function is the focus.
Muscle & Nerve | 2007
Dušan M. Jeftinija; Qing Bo Wang; Sadie L. Hebert; Christopher M. Norris; Zhen Yan; Mark M. Rich; Susan D. Kraner
Although Ca2+‐dependent signaling pathways are important for skeletal muscle plasticity, the sources of Ca2+ that activate these signaling pathways are not completely understood. Influx of Ca2+ through surface membrane Ca2+ channels may activate these pathways. We examined expression of two L‐type Ca2+ channels in adult skeletal muscle, the CaV 1.1 and CaV 1.2, with isoform‐specific antibodies in Western blots and immunocytochemistry assays. Consistent with a large body of work, expression of the CaV 1.1 was restricted to skeletal muscle where it was expressed in T‐tubules. CaV 1.2 was also expressed in skeletal muscle, in the sarcolemma of type I and IIa myofibers. Exercise‐induced alterations in muscle fiber types cause a concomitant increase in the number of both CaV 1.2 and type IIa–positive fibers. Taken together, these data suggest that the CaV 1.2 Ca2+ channel is expressed in adult skeletal muscle in a fiber type–specific manner, which may help to maintain oxidative muscle phenotype. Muscle Nerve, 2007