Saeid Nahavandi
Deakin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saeid Nahavandi.
Biosensors and Bioelectronics | 2011
Khashayar Khoshmanesh; Saeid Nahavandi; Sara Baratchi; Arnan Mitchell; Kourosh Kalantar-zadeh
Dielectrophoresis, the induced motion of polarisable particles in a nonuniform electric field, has been proven as a versatile mechanism to transport, accumulate, separate and characterise micro/nano scale bioparticles in microfluidic systems. The integration of DEP systems into the microfluidics enables the inexpensive, fast, highly sensitive, highly selective and label-free detection and analysis of target bioparticles. This review provides an in-depth overview of state-of-the-art dielectrophoretic (DEP) platforms integrated into microfluidics aimed towards different biomedical applications. It classifies the current DEP systems in terms of different microelectrode configurations and operating strategies devised to generate and employ DEP forces in such processes, and compares the features of each approach. Finally, it suggests the future trends and potential applications of DEP systems in single cell analysis, stem cell research, establishing novel devices, and realising fully DEP-activated lab-on-a-chip systems.
IEEE Transactions on Neural Networks | 2011
Abbas Khosravi; Saeid Nahavandi; Douglas C. Creighton; Amir F. Atiya
This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each methods performance. A selection of 12 synthetic and real-world case studies is used to examine each methods performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method.
IEEE Transactions on Neural Networks | 2011
Abbas Khosravi; Saeid Nahavandi; Douglas C. Creighton; Amir F. Atiya
Prediction intervals (PIs) have been proposed in the literature to provide more information by quantifying the level of uncertainty associated to the point forecasts. Traditional methods for construction of neural network (NN) based PIs suffer from restrictive assumptions about data distribution and massive computational loads. In this paper, we propose a new, fast, yet reliable method for the construction of PIs for NN predictions. The proposed lower upper bound estimation (LUBE) method constructs an NN with two outputs for estimating the prediction interval bounds. NN training is achieved through the minimization of a proposed PI-based objective function, which covers both interval width and coverage probability. The method does not require any information about the upper and lower bounds of PIs for training the NN. The simulated annealing method is applied for minimization of the cost function and adjustment of NN parameters. The demonstrated results for 10 benchmark regression case studies clearly show the LUBE method to be capable of generating high-quality PIs in a short time. Also, the quantitative comparison with three traditional techniques for prediction interval construction reveals that the LUBE method is simpler, faster, and more reliable.
digital image computing: techniques and applications | 2010
Jin Wang; Mary Fenghua She; Saeid Nahavandi; Abbas Z. Kouzani
Human identification by gait has created a great deal of interest in computer vision community due to its advantage of inconspicuous recognition at a relatively far distance. This paper provides a comprehensive survey of recent developments on gait recognition approaches. The survey emphasizes on three major issues involved in a general gait recognition system, namely gait image representation, feature dimensionality reduction and gait classification. Also, a review of the available public gait datasets is presented. The concluding discussions outline a number of research challenges and provide promising future directions for the field.
IEEE Transactions on Power Systems | 2012
Abbas Khosravi; Saeid Nahavandi; Doug Creighton; Dipti Srinivasan
Accurate short term load forecasting (STLF) is essential for a variety of decision-making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. This paper proposes the application of Interval Type-2 Fuzzy Logic Systems (IT2 FLSs) for the problem of STLF. IT2 FLSs, with additional degrees of freedom, are an excellent tool for handling uncertainties and improving the prediction accuracy. Experiments conducted with real datasets show that IT2 FLS models precisely approximate future load demands with an acceptable accuracy. Furthermore, they demonstrate an encouraging degree of accuracy superior to feedforward neural networks and traditional type-1 Takagi-Sugeno-Kang (TSK) FLSs.
IEEE Transactions on Power Systems | 2010
Abbas Khosravi; Saeid Nahavandi; Doug Creighton
Short-term load forecasting is fundamental for the reliable and efficient operation of power systems. Despite its importance, accurate prediction of loads is problematic and far remote. Often uncertainties significantly degrade performance of load forecasting models. Besides, there is no index available indicating reliability of predicted values. The objective of this study is to construct prediction intervals for future loads instead of forecasting their exact values. The delta technique is applied for constructing prediction intervals for outcomes of neural network models. Some statistical measures are developed for quantitative and comprehensive evaluation of prediction intervals. According to these measures, a new cost function is designed for shortening length of prediction intervals without compromising their coverage probability. Simulated annealing is used for minimization of this cost function and adjustment of neural network parameters. Demonstrated results clearly show that the proposed methods for constructing prediction interval outperforms the traditional delta technique. Besides, it yields prediction intervals that are practically more reliable and useful than exact point predictions.
IEEE Transactions on Sustainable Energy | 2013
Abbas Khosravi; Saeid Nahavandi; Doug Creighton
Quantification of uncertainties associated with wind power generation forecasts is essential for optimal management of wind farms and their successful integration into power systems. This paper investigates two neural network-based methods for direct and rapid construction of prediction intervals (PIs) for short-term forecasting of power generation in wind farms. The lower upper bound estimation and bootstrap methods are used to quantify uncertainties associated with forecasts. The effectiveness and efficiency of these two general methods for uncertainty quantification is examined using twenty four month data from a wind farm in Australia. PIs with a confidence level of 90% are constructed for four forecasting horizons: five, ten, fifteen, and thirty minutes. Quantitative measures are applied for objective evaluation and unbiased comparison of PI quality. Demonstrated results indicate that reliable PIs can be constructed in a short time without resorting to complicate computational methods or models. Also quantitative comparison reveals that bootstrap PIs are more suitable for short prediction horizon, and lower upper bound estimation PIs are more appropriate for longer forecasting horizons.
IEEE Transactions on Intelligent Transportation Systems | 2011
Abbas Khosravi; Ehsan Mazloumi; Saeid Nahavandi; Douglas C. Creighton; J. W. C. van Lint
The accurate prediction of travel times is desirable but frequently prone to error. This is mainly attributable to both the underlying traffic processes and the data that are used to infer travel time. A more meaningful and pragmatic approach is to view travel time prediction as a probabilistic inference and to construct prediction intervals (PIs), which cover the range of probable travel times travelers may encounter. This paper introduces the delta and Bayesian techniques for the construction of PIs. Quantitative measures are developed and applied for a comprehensive assessment of the constructed PIs. These measures simultaneously address two important aspects of PIs: 1) coverage probability and 2) length. The Bayesian and delta methods are used to construct PIs for the neural network (NN) point forecasts of bus and freeway travel time data sets. The obtained results indicate that the delta technique outperforms the Bayesian technique in terms of narrowness of PIs with satisfactory coverage probability. In contrast, PIs constructed using the Bayesian technique are more robust against the NN structure and exhibit excellent coverage probability.
Journal of Materials Processing Technology | 2002
Hong Zheng; Lingxue Kong; Saeid Nahavandi
Abstract This paper is concerned with the problem of automatic inspection of metallic surface using machine vision. An experimental system has been developed to take images of external metallic surfaces and an intelligent approach based on morphology and genetic algorithms is proposed to detect structural defects on bumpy metallic surfaces. The approach employs genetic algorithms to automatically learn morphology processing parameters such as structuring elements and defect segmentation threshold. This paper describes the detailed procedures which include encoding scheme, genetic operation and evaluation function. The proposed method has been implemented and tested on a number of metallic surfaces. The results suggest that the method can provide an accurate identification to the defects and can be developed into a viable commercial visual inspection system.
IEEE Transactions on Power Systems | 2016
Abdollah Kavousi-Fard; Abbas Khosravi; Saeid Nahavandi
This paper makes use of the idea of prediction intervals (PIs) to capture the uncertainty associated with wind power generation in power systems. Since the forecasting errors cannot be appropriately modeled using distribution probability functions, here we employ a powerful nonparametric approach called lower upper bound estimation (LUBE) method to construct the PIs. The proposed LUBE method uses a new framework based on a combination of PIs to overcome the performance instability of neural networks (NNs) used in the LUBE method. Also, a new fuzzy-based cost function is proposed with the purpose of having more freedom and flexibility in adjusting NN parameters used for construction of PIs. In comparison with the other cost functions in the literature, this new formulation allows the decision-makers to apply their preferences for satisfying the PI coverage probability and PI normalized average width individually. As the optimization tool, bat algorithm with a new modification is introduced to solve the problem. The feasibility and satisfying performance of the proposed method are examined using datasets taken from different wind farms in Australia.