Saeid Taheri
Medical University of South Carolina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saeid Taheri.
Journal of Pharmacology and Experimental Therapeutics | 2007
Eduardo Candelario-Jalil; Saeid Taheri; Yi Yang; Rohit Sood; Mark Grossetete; Eduardo Y. Estrada; Bernd L. Fiebich; Gary A. Rosenberg
Increased permeability of the blood-brain barrier (BBB) is important in neurological disorders. Neuroinflammation is associated with increased BBB breakdown and brain injury. Tumor necrosis factor (TNF)-α is involved in BBB injury and edema formation through a mechanism involving matrix metalloproteinase (MMP) up-regulation. There is emerging evidence indicating that cyclooxygenase (COX) inhibition limits BBB disruption following ischemic stroke and bacterial meningitis, but the mechanisms involved are not known. We used intracerebral injection of TNF-α to study the effect of COX inhibition on TNF-α-induced BBB breakdown, MMP expression/activity, and oxidative stress. BBB disruption was evaluated by the uptake of 14C-sucrose into the brain and by magnetic resonance imaging utilizing gadolinium-diethylenetriaminepentaacetic acid as a paramagnetic contrast agent. Using selective inhibitors of each COX isoform, we found that COX-1 activity is more important than COX-2 in BBB opening. TNF-α induced a significant up-regulation of gelatinase B (MMP-9), stromelysin-1 (MMP-3), and COX-2. In addition, TNF-α significantly depleted glutathione as compared with saline. Indomethacin (10 mg/kg i.p.), an inhibitor of COX-1 and COX-2, reduced BBB damage at 24 h. Indomethacin significantly attenuated MMP-9 and MMP-3 expression and activation and prevented the loss of endogenous radical scavenging capacity following intracerebral injection of TNF-α. Our results show for the first time that BBB disruption during neuroinflammation can be significantly reduced by administration of COX inhibitors. Modulation of COX in brain injury by COX inhibitors or agents modulating prostaglandin E2 formation/signaling may be useful in clinical settings associated with BBB disruption.
Stroke | 2011
Saeid Taheri; Charles Gasparovic; Branko N. Huisa; John C. Adair; Elaine Edmonds; Jillian Prestopnik; Mark Grossetete; N. Jon Shah; John Wills; Clifford Qualls; Gary A. Rosenberg
Background and Purpose— Disruption of the blood–brain barrier has been proposed to be important in vascular cognitive impairment. Increased cerebrospinal fluid albumin and contrast-enhanced MRI provide supporting evidence, but quantification of the blood–brain barrier permeability in patients with vascular cognitive impairment is lacking. Therefore, we acquired dynamic contrast-enhanced MRI to quantify blood–brain barrier permeability in vascular cognitive impairment. Method— We studied 60 patients with suspected vascular cognitive impairment. They had neurological and neuropsychological testing, permeability measurements with dynamic contrast-enhanced MRI, and lumbar puncture to measure albumin index. Patients were separated clinically into subcortical ischemic vascular disease (SIVD), multiple and lacunar infarcts, and leukoaraiosis. Twenty volunteers were controls for the dynamic contrast-enhanced MRI studies, and control cerebrospinal fluid was obtained from 20 individuals undergoing spinal anesthesia for nonneurological problems. Results— Thirty-six patients were classified as SIVD, 8 as multiple and lacunar infarcts, and 9 as leukoaraiosis. The albumin index was significantly increased in the SIVD group compared with 20 control subjects. Permeabilities for the patients with vascular cognitive impairment measured by dynamic contrast-enhanced MRI were significantly increased over control subjects (P<0.05). Patient age did not correlate with either the blood–brain barrier permeability or albumin index. Highest albumin index values were seen in the SIVD group (P<0.05) and were significantly increased over multiple and lacunar infarcts. Ki values were elevated over control subjects in SIVD but were similar to multiple and lacunar infarcts. Conclusions— There was abnormal permeability in white matter in patients with SIVD as shown by dynamic contrast-enhanced MRI and albumin index. Future studies will be needed to determine the relationship of blood–brain barrier damage and development of white matter hyperintensities.
Journal of Cerebral Blood Flow and Metabolism | 2008
Rohit Sood; Saeid Taheri; Eduardo Candelario-Jalil; Eduardo Y. Estrada; Gary A. Rosenberg
Proteolytic disruption of the extracellular matrix with opening of the blood—brain barrier (BBB) because of matrix metalloproteinases (MMPs) occurs in reperfusion injury after stroke. Matrix metalloproteinase inhibition blocks the early disruption of the BBB, but the long-term consequences of short-term MMP inhibition are not known. Recently, a method to quantify BBB permeability by graphical methods was described, which provides a way to study both early disruption of the BBB and long-term effects on recovery in the same animal. We used a broad-spectrum MMP inhibitor, BB1101, to determine both the usefulness of the Magnetic resonance imaging (MRI) method for treatment studies and the long-term effects on recovery. Magnetic resonance imaging studies were performed in control (N = 6) and drug-treated (N = 8) groups on a dedicated 4.7-T MRI scanner. Adult Wistar—Kyoto underwent a 2-h middle cerebral artery occlusion followed by an MRI study after 3 h of reperfusion, which consisted of T2- and diffusion-weighted techniques. Additionally, a rapid T1 mapping protocol was also implemented to acquire one pre-gadolinium-diethylenetriaminepentaacetic acid baseline data set followed by postinjection data sets at 3-min intervals for 45 mins. The same animal was imaged again at 48 h for lesion size estimation. Data was postprocessed pixel-wise to generate apparent diffusion coefficient and permeability coefficient maps. Treatment with BB-1101 significantly reduced BBB permeability at 3 h, but failed to reduce lesion size at 48 h. Behavioral studies showed impairment in recovery in treated rats. Magnetic resonance imaging allowed for the monitoring of multiple parameters in the same animal. Our studies showed that BB-1101 was an excellent inhibitor of the BBB damage. However, results show that BB-1101 may be responsible for significant deterioration in neurologic status of treated animals. Although these preliminary results suggest that BB-1101 is useful in reducing early BBB leakage owing to reperfusion injury in stroke, further studies will be needed to determine whether the later detrimental effects can be eliminated by shorter time course of drug delivery.
Stroke | 2011
Eduardo Candelario-Jalil; Jeffrey Thompson; Saeid Taheri; Mark Grossetete; John C. Adair; Elaine Edmonds; Jillian Prestopnik; John Wills; Gary A. Rosenberg
Background and Purpose— Subcortical ischemic vascular disease (SIVD) is a major form of vascular cognitive impairment (VCI) due to small vessel disease. Matrix metalloproteinases (MMPs) are neutral proteases that disrupt the blood–brain barrier and degrade myelin basic protein under conditions of neuroinflammation. Brain tissues and cerebrospinal fluid (CSF) of patients with VCI have increased levels of MMPs. We hypothesized that patients with SIVD have increased MMPs in the CSF, which are associated with increased CSF albumin. Methods— We studied 60 patients with suspected VCI. Twenty-five were classified as SIVD, whereas other groups included mixed Alzheimer disease and VCI, multiple strokes, and leukoaraiosis when white matter lesions were present and the diagnosis of VCI was uncertain. MMP-2 and MMP-9 in CSF and plasma were measured by gel zymography and indexed to CSF and plasma albumin. MMP-3 activity was measured by fluorescent assay. Results— We found reduced MMP-2 index (P<0.001) in the CSF for the full group of patients (SIVD, multiple strokes, mixed Alzheimer disease and VCI, and leukoaraiosis) compared with control subjects, whose CSF was obtained during spinal anesthesia. MMP-3 activity was increased in VCI compared with control subjects (P<0.01). In SIVD, MMP-2 index showed a negative correlation with albumin index, which was absent with the MMP-9 index. Combining MMP-2 index and MMP-3 activity separated the patients with SIVD from the control subjects with high specificity (P<0.0005). Conclusions— Our results support the hypothesis that MMPs are associated with increased CSF albumin and suggest that they may contribute to the pathophysiology of SIVD.
Journal of Cerebral Blood Flow and Metabolism | 2013
Yi Yang; Jeffrey Thompson; Saeid Taheri; Victor M Salayandia; Thera A McAvoy; Jeff W. Hill; Yirong Yang; Eduardo Y. Estrada; Gary A. Rosenberg
In cerebral ischemia, matrix metalloproteinases (MMPs) have a dual role by acutely disrupting tight junction proteins (TJPs) in the blood-brain barrier (BBB) and chronically promoting angiogenesis. Since TJP remodeling of the neurovascular unit (NVU) is important in recovery and early inhibition of MMPs is neuroprotective, we hypothesized that short-term MMP inhibition would reduce infarct size and promote angiogenesis after ischemia. Adult spontaneously hypertensive rats had a transient middle cerebral artery occlusion with reperfusion. At the onset of ischemia, they received a single dose of the MMP inhibitor, GM6001. They were studied at multiple times up to 4 weeks with immunohistochemistry, biochemistry, and magnetic resonance imaging (MRI). We observed newly formed vessels in peri-infarct regions at 3 weeks after reperfusion. Dynamic contrast-enhanced MRI showed BBB opening in new vessels. Along with the new vessels, pericytes expressed zonula occludens-1 (ZO-1) and MMP-3, astrocytes expressed ZO-1, occludin, and MMP-2, while endothelial cells expressed claudin-5. The GM6001, which reduced tissue loss at 3 to 4 weeks, significantly increased new vessel formation with expression of TJPs and MMPs. Our results show that pericytes and astrocytes act spatiotemporally, contributing to extraendothelial TJP formation, and that MMPs are involved in BBB restoration during recovery. Early MMP inhibition benefits neurovascular remodeling after stroke.
Magnetic Resonance in Medicine | 2011
Saeid Taheri; Charles Gasparovic; Nadim Jon Shah; Gary A. Rosenberg
Breakdown of the blood‐brain barrier (BBB), occurring in many neurological diseases, has been difficult to measure noninvasively in humans. Dynamic contrast‐enhanced magnetic resonance imaging measures BBB permeability. However, important technical challenges remain and normative data from healthy humans is lacking. We report the implementation of a method for measuring BBB permeability, originally developed in animals, to estimate BBB permeability in both healthy subjects and patients with white matter pathology. Fast T1 mapping was used to measure the leakage of contrast agent Gadolinium diethylene triamine pentaacetic acid (Gd‐DTPA) from plasma into brain. A quarter of the standard Gd‐DTPA dose for dynamic contrast‐enhanced magnetic resonance imaging was found to give both sufficient contrast‐to‐noise and high T1 sensitivity. The Patlak graphical approach was used to calculate the permeability from changes in 1/T1. Permeability constants were compared with cerebrospinal fluid albumin index. The upper limit of the 95% confidence interval for white matter BBB permeability for normal subjects was 3 × 10−4 L/g min. MRI measurements correlated strongly with levels of cerebrospinal fluid albumin in those subjects undergoing lumbar puncture. Dynamic contrast‐enhanced magnetic resonance imaging with low dose Gd‐DTPA and fast T1 imaging is a sensitive method to measure subtle differences in BBB permeability in humans and may have advantages over techniques based purely on the measurement of pixel contrast changes. Magn Reson Med, 2010.
Journal of Cerebral Blood Flow and Metabolism | 2009
Rohit Sood; Yi Yang; Saeid Taheri; Eduardo Candelario-Jalil; Eduardo Y. Estrada; Espen J. Walker; Jeffrey Thompson; Gary A. Rosenberg
White matter (WM) injury after bilateral common carotid artery occlusion (BCAO) in rat is associated with disruption of the blood—brain barrier (BBB) by matrix metalloproteinases (MMPs). We hypothesized that WM injury as seen on magnetic resonance imaging (MRI) would correlate with regions of increased MMP activity. MRI was performed 3 days after BCAO surgery in rats. Apparent diffusion coefficients (ADC) were calculated and vascular permeability was quantified by the multiple-time graphical analysis (MTGA) method, using gadolinium-diethylenetriamine pentaacid (Gd-DTPA). After MRI, one group of animals had BBB permeability measured in the WM with 14C-sucrose, and another had Evans blue (EB) injected for fluorescent microscopy for MMP-2, MMP-9, tight junction proteins (TJPs), and in situ zymography. We found that ADC values were increased in WM in BCAO rats compared with controls (P< 0.05). WM with increased ADC had leakage of EB. MMP-2 and MMP-9 activity on in situ zymograms corresponded with leakage of EB. Although increased permeability to EB could be visualized, permeability quantification with 14C-sucrose and Gd-DTPA failed to show increases and TJPs were intact. We propose that increased ADC, which is a marker of vasogenic edema, is related to activity of MMP-2 and MMP-9. MRI provides unique information that can be used to guide tissue studies of WM injury.
NeuroImage | 2015
Noam I. Keren; Saeid Taheri; Elena M. Vazey; Paul S. Morgan; Ann-Charlotte Granholm; Gary Aston-Jones; Mark A. Eckert
The locus coeruleus (LC) noradrenergic system regulates arousal and modulates attention through its extensive projections across the brain. LC dysfunction has been implicated in a broad range of neurodevelopmental, neurodegenerative and psychiatric disorders, as well as in the cognitive changes observed during normal aging. Magnetic resonance imaging (MRI) has been used to characterize the human LC (elevated contrast relative to surrounding structures), but there is limited understanding of the factors underlying putative LC contrast that are critical to successful biomarker development and confidence in localizing nucleus LC. We used ultra-high-field 7 T magnetic resonance imaging (MRI) to acquire T1-weighted microscopy resolution images (78 μm in-plane resolution) of the LC from post-mortem tissue samples. Histological analyses were performed to characterize the distribution of tyrosine hydroxylase (TH) and neuromelanin in the scanned tissue, which allowed for direct comparison with MR microscopy images. Our results indicate that LC-MRI contrast corresponds to the location of neuromelanin cells in LC; these also correspond to norepinephrine neurons. Thus, neuromelanin appears to serve as a natural contrast agent for nucleus LC that can be used to localize nucleus LC and may have the potential to characterize neurodegenerative disease.
PLOS ONE | 2009
Saeid Taheri; Eduardo Candelario-Jalil; Eduardo Y. Estrada; Gary A. Rosenberg
Variations in apparent diffusion coefficient of water (ADC) and blood-brain barrier (BBB) permeability after ischemia have been suggested, though the correlation between ADC alterations and BBB opening remains to be studied. We hypothesized that there are correlations between the alteration of ADC and BBB permeability. Rats were subjected to 2 h of transient middle cerebral artery occlusion and studied at 3 and 48 h of reperfusion, which are crucial times of BBB opening. BBB permeability and ADC values were measured by dynamic contrast-enhanced MRI and diffusion-weighted imaging, respectively. Temporal and spatial analyses of the evolution of BBB permeability and ADC alteration in cortical and subcortical regions were conducted along with the correlation between ADC and BBB permeability data. We found significant increases in BBB leakage and reduction in ADC values between 3 and 48 h of reperfusion. We identified three MR tissue signature models: high Ki and low ADC, high Ki and normal ADC, and normal Ki and low ADC. Over time, areas with normal Ki and low ADC transformed into areas with high Ki. We observed a pattern of lesion evolution where the extent of initial ischemic injury reflected by ADC abnormalities determines vascular integrity. Our results suggest that regions with vasogenic edema alone are not likely to develop low ADC by 48 h and may undergo recovery.
Free Radical Biology and Medicine | 2014
Ziyan Zhang; Jingqi Yan; Saeid Taheri; Ke Jian Liu; Honglian Shi
Stroke is a leading cause of adult morbidity and mortality with very limited treatment options. Evidence from preclinical models of ischemic stroke has demonstrated that the antioxidant N-acetylcysteine (NAC) effectively protects the brain from ischemic injury. Here, we evaluated a new pathway through which NAC exerted its neuroprotection in a transient cerebral ischemia animal model. Our results demonstrated that pretreatment with NAC increased protein levels of hypoxia-inducible factor-1α (HIF-1α), the regulatable subunit of HIF-1, and its target proteins erythropoietin (EPO) and glucose transporter (GLUT)-3, in the ipsilateral hemispheres of rodents subjected to 90min middle cerebral artery occlusion (MCAO) and 24h reperfusion. Interestingly, after NAC pretreatment and stroke, the contralateral hemisphere also demonstrated increased levels of HIF-1α, EPO, and GLUT-3, but to a lesser extent. Suppressing HIF-1 activity with two widely used pharmacological inhibitors, YC-1 and 2ME2, and specific knockout of neuronal HIF-1α abolished NACs neuroprotective effects. The results also showed that YC-1 and 2ME2 massively enlarged infarcts, indicating that their toxic effect was larger than just abolishing NACs neuroprotective effects. Furthermore, we determined the mechanism of NAC-mediated HIF-1α induction. We observed that NAC pretreatment upregulated heat-shock protein 90 (Hsp90) expression and increased the interaction of Hsp90 with HIF-1α in ischemic brains. The enhanced association of Hsp90 with HIF-1α increased HIF-1α stability. Moreover, Hsp90 inhibition attenuated NAC-induced HIF-1α protein accumulation and diminished NAC-induced neuroprotection in the MCAO model. These results strongly indicate that HIF-1 plays an important role in NAC-mediated neuroprotection and provide a new molecular mechanism involved in the antioxidants neuroprotection in ischemic stroke.