Saeid Vafaei
Queen Mary University of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saeid Vafaei.
Langmuir | 2011
Saeid Vafaei; Dongsheng Wen; Theodorian Borca-Tasciuc
This investigation introduces the asymptotic contact angle as a criterion to quantify the surface wettability of nanofluids and determines the variation of solid surface tensions with nanofluid concentration and nanoparticle size. The asymptotic contact angle, which is only a function of gas-liquid-solid physical properties, is independent of droplet size for ideal surfaces and can be obtained by equating the normal component of interfacial force on an axisymmetric droplet to that of a spherical droplet. The technique is illustrated for a series of bismuth telluride nanofluids where the variation of surface wettability is measured and evaluated by asymptotic contact angles as a function of nanoparticle size, concentration, and substrate material. It is found that the variation of nanofluid concentration, nanoparticle size, and substrate modifies both the gas-liquid and solid surface tensions, which consequently affects the force balance at the triple line, the contact angle, and surface wettability.
Journal of Colloid and Interface Science | 2010
Saeid Vafaei; Dongsheng Wen
This work investigates detailed formation of air bubbles on a submerged micrometer-sized nozzle. The experimental study is conducted on a submerged nozzle of radius of 55 microm under low gas flow rate conditions (0.015-0.83 ml/min). The bubble formation is recorded by a high-speed optical camera and detailed characteristics of bubble formation such as the variations of instantaneous contact angles, bubble heights and the radii of contact lines are obtained, which shows a weak dependence on the flow rate under the conditions of current work. Using experimentally captured values of the height of bubble and the radius of contact line, the Young-Laplace equation is solved, which is found to be able to predict the bubble evolution quite well until the last milliseconds before the detachment. A force analysis of bubble formation reveals that the observed variations of contact angles and other characteristics during the bubble growth period are associated with the relative contribution of surface tension, buoyancy force and gravitational force.
2010 14th International Heat Transfer Conference, Volume 6 | 2010
Saeid Vafaei; Dongsheng Wen
This work reports an experimental study of convective heat transfer of aqueous alumina nanofluids in a horizontal microchannel under laminar flow condition. The variation of local heat transfer coefficients, in both entrance and developed flow regime, is obtained as a function of axial distance. The heat transfer coefficient of nanofluids is found to be dependent upon not only nanoparticle concentration but also mass flow rate. Different to the behavior in conventional-sized channels, the major heat transfer coefficient enhancement is observed in fully developed region in microchannels. Discussions of the results suggest that the heterogeneous nature of nanoparticle flow should be considered.Copyright
ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting | 2010
Saeid Vafaei; Dongsheng Wen
The purpose of this study is to investigate the effect of gold nanofluid on the formation of gas bubbles on top of a stainless steel substrate plate nozzle. The experiment reveals a unique phenomenon of enhanced pinning of the triple line of gold nanofluids for bubbles forming on the substrate plate, i.e the gold nanoparticles are found to prevent the spreading of the triple line during the bubble formation. Different to the liquid droplet measurement, the bubble contact angle is found to be slightly larger for formation of bubbles inside gold nanofluids. It is also observed that bubbles develop earlier inside the nanofluids with reduced bubble departure volume and increased bubble formation frequency. The shape of the bubble is found to be in good agreement with predictions of the Laplace-Young equation under the low gas flow rates inside water. Such a good agreement is also observed for bubbles forming inside nanofluids except a few characteristic points. The variation of solid surface tensions and the resultant force balances at the triple line are believed to be responsible for the modified dynamics of the triple line inside gold nanofluids and subsequent bubble formation.Copyright
ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting | 2010
Saeid Vafaei; Panagiota Angeli; Dongsheng Wen
The purpose of this investigation is to conduct a comparative study on the formation of bubble on top of a stainless steel needle nozzle and two substrate plate nozzles. The experimental study is conducted on a submerged needle nozzle with internal diameter of 0.51 mm and 0.155 mm thickness, and two stainless steel substrate plates with nozzle diameter of 0.4 mm and 0.51mm respectively. The experiment is carried out under low gas flow rates (0.015 ∼ 0.85 ml/min). The bubble formation is recorded by a high speed video camera and detailed characteristics of bubble formation such as the variations of instantaneous contact angles, bubble heights and the radii of contact lines are obtained, which show a weak dependence on the flow rate under the conditions of current work. Using experimentally captured values of the height of bubble and the radius of contact line, the Young-Laplace equation is solved, which is found to be able to predict bubble evolution quite well until the last milliseconds before the detachment. Interestingly, it is found that the trends of the variation of bubble volume expansion rate from the stainless steel needle and the substrate plate are different, however, the rest of bubble characteristics such as radius of contact line, bubble height, contact angle, and radius of curvature of bubble apex follow same trends as the time and bubble volume change for formation of bubble on top of needle and substrate nozzles. A force analysis of bubble formation reveals that the observed variations of contact angles and other characteristics during the bubble growth period are associated with the relative contribution of surface tension, buoyancy and gravitational forces.Copyright
2010 14th International Heat Transfer Conference, Volume 1 | 2010
Saeid Vafaei; Dongsheng Wen
This work reported an experimental study of flow boiling of pure water and aqueous alumina nanofluids in a 0.5 millimetre narrow channel. An open-ended stainless steel microchannel system is constructed where liquids are supplied by a syringe pump and heated by a variable DC power source, with synchronized measurement of the surface temperature distribution along the channel and pressure fluctuations associated with bubbles. The effect of nanoparticle concentration, inlet subcooling and mass flow rate and on critical heat flux in a microchannel is investigated. A modest increase in CHF is observed for nanofluids, being higher at higher particle concentrations and higher inlet subcoolings. Regular fluctuations in temperature and pressure signals suggest a cyclic boiling events occurring in the narrow channel; the large pressure fluctuation, coupling with the surface temperature and inlet temperature fluctuations, would affect flow boiling mechanisms in narrow channels.Copyright
Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer | 2009
Saeid Vafaei; Dongsheng Wen
This work investigates the subcooled flow boiling of aqueous based nanofluids in a 510 μm single microchannel with a focus on the effect of nanoparticles on the critical heat flux (CHF). The surface temperature distribution along the pipe, the inlet and outlet pressures and temperatures are measured simultaneously for different concentrations of alumina nanofluids and dionized water. The experiment shows a remarkable increase ∼ 31% in the CHF under very low nanoparticle concentrations (∼0.1v%) and a nonlinear influence of nanoparticles on the subcooled boiling heat transfer.Copyright
ASME 2009 Fluids Engineering Division Summer Meeting | 2009
Saeid Vafaei; Dongsheng Wen; G. Ramanath; Theodorian Borca-Tasciuc
The purpose of this investigation is to find a unique and accurate criterion to measure surface wettability. The asymptotic contact angle (droplet contact angle in no gravity condition), which is independent of droplet size, is used to identify the surface wettability in this work. The asymptotic contact angle is calculated by equating the normal component of interfacial force on an axisymmetric droplet and spherical droplet. The effect of 2.5 nm bismuth telluride nanoparticles on surface wettability is measured and evaluated by asymptotic contact angles as a sample. This paper also studies the effects of nanoparticles on solid, gas and liquid interactions at the triple line as well as the gas-liquid surface tension of aqueous solutions of 2.5 nm bismuth telluride nanoparticles functionalized with thioglycolic acid. Experimental measurements of nanofluid droplet shapes show that the contact angle strongly depends on nanoparticle concentrations. Fitting the droplet shape with predictions of the Laplace-Young equation, the nanofluid gas-liquid surface tension is determined.Copyright
Particuology | 2009
Dongsheng Wen; Guiping Lin; Saeid Vafaei; Kai Zhang
Journal of Nanoparticle Research | 2011
Saeid Vafaei; Dongsheng Wen