Safwan Halabi
Henry Ford Health System
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Safwan Halabi.
American Journal of Neuroradiology | 2015
Waleed Brinjikji; Patrick H. Luetmer; Bryan A. Comstock; Brian W. Bresnahan; L. E. Chen; Richard A. Deyo; Safwan Halabi; Judith A. Turner; Andrew L. Avins; Kathryn T. James; John T. Wald; David F. Kallmes; Jeffrey G. Jarvik
This meta-analysis of the literature reveals that imaging findings of spine degeneration are present in high proportions of asymptomatic individuals, increasing with age. Many imaging-based degenerative features are likely part of normal aging and unassociated with pain. BACKGROUND AND PURPOSE: Degenerative changes are commonly found in spine imaging but often occur in pain-free individuals as well as those with back pain. We sought to estimate the prevalence, by age, of common degenerative spine conditions by performing a systematic review studying the prevalence of spine degeneration on imaging in asymptomatic individuals. MATERIALS AND METHODS: We performed a systematic review of articles reporting the prevalence of imaging findings (CT or MR imaging) in asymptomatic individuals from published English literature through April 2014. Two reviewers evaluated each manuscript. We selected age groupings by decade (20, 30, 40, 50, 60, 70, 80 years), determining age-specific prevalence estimates. For each imaging finding, we fit a generalized linear mixed-effects model for the age-specific prevalence estimate clustering in the study, adjusting for the midpoint of the reported age interval. RESULTS: Thirty-three articles reporting imaging findings for 3110 asymptomatic individuals met our study inclusion criteria. The prevalence of disk degeneration in asymptomatic individuals increased from 37% of 20-year-old individuals to 96% of 80-year-old individuals. Disk bulge prevalence increased from 30% of those 20 years of age to 84% of those 80 years of age. Disk protrusion prevalence increased from 29% of those 20 years of age to 43% of those 80 years of age. The prevalence of annular fissure increased from 19% of those 20 years of age to 29% of those 80 years of age. CONCLUSIONS: Imaging findings of spine degeneration are present in high proportions of asymptomatic individuals, increasing with age. Many imaging-based degenerative features are likely part of normal aging and unassociated with pain. These imaging findings must be interpreted in the context of the patients clinical condition.
Radiology | 2017
David B. Larson; Matthew C. Chen; Matthew P. Lungren; Safwan Halabi; Nicholas V. Stence; Curtis P. Langlotz
Purpose To compare the performance of a deep-learning bone age assessment model based on hand radiographs with that of expert radiologists and that of existing automated models. Materials and Methods The institutional review board approved the study. A total of 14 036 clinical hand radiographs and corresponding reports were obtained from two childrens hospitals to train and validate the model. For the first test set, composed of 200 examinations, the mean of bone age estimates from the clinical report and three additional human reviewers was used as the reference standard. Overall model performance was assessed by comparing the root mean square (RMS) and mean absolute difference (MAD) between the model estimates and the reference standard bone ages. Ninety-five percent limits of agreement were calculated in a pairwise fashion for all reviewers and the model. The RMS of a second test set composed of 913 examinations from the publicly available Digital Hand Atlas was compared with published reports of an existing automated model. Results The mean difference between bone age estimates of the model and of the reviewers was 0 years, with a mean RMS and MAD of 0.63 and 0.50 years, respectively. The estimates of the model, the clinical report, and the three reviewers were within the 95% limits of agreement. RMS for the Digital Hand Atlas data set was 0.73 years, compared with 0.61 years of a previously reported model. Conclusion A deep-learning convolutional neural network model can estimate skeletal maturity with accuracy similar to that of an expert radiologist and to that of existing automated models.
Journal of The American College of Radiology | 2015
Andrew K. Moriarity; Chad Klochko; Matthew O'Brien; Safwan Halabi
PURPOSE To examine the effect of integrating point-of-care clinical decision support (CDS) using the ACR Appropriateness Criteria (AC) into an inpatient computerized provider order entry (CPOE) system for advanced imaging requests. METHODS Over 12 months, inpatient CPOE requests for nuclear medicine, CT, and MRI were processed by CDS to generate an AC score using provider-selected data from pull-down menus. During the second 6-month period, AC scores were displayed to ordering providers, and acknowledgement was required to finalize a request. Request AC scores and percentages of requests not scored by CDS were compared among primary care providers (PCPs) and specialists, and by years in practice of the responsible physician of record. RESULTS CDS prospectively generated a score for 26.0% and 30.3% of baseline and intervention requests, respectively. The average AC score increased slightly for all requests (7.2 ± 1.6 versus 7.4 ± 1.5; P < .001), for PCPs (6.9 ± 1.9 versus 7.4 ± 1.6; P < .001), and minimally for specialists (7.3 ± 1.6 versus 7.4 ± 1.5; P < .001). The percentage of requests lacking sufficient structured clinical information to generate an AC score decreased for all requests (73.1% versus 68.9%; P < .001), for PCPs (78.0% versus 71.7%; P < .001), and for specialists (72.9% versus 69.1%; P < .001). CONCLUSIONS Integrating CDS into inpatient CPOE slightly increased the overall AC score of advanced imaging requests as well as the provision of sufficient structured data to automatically generate AC scores. Both effects were more pronounced in PCPs compared with specialists.
Journal of The American College of Radiology | 2014
Joshua Broder; Safwan Halabi
With the promotion and incentivization of electronic health records and computerized order entry by CMS, there is a unique opportunity to catalyze the use of evidence-based guidelines with the inclusion of clinical decision support (CDS) tools. Imaging CDS tools have evolved from static paper algorithms, checklists, and scores to interactive systems that provide feedback and recommendations with the intent of directing health care providers to deliver best practices. Some of the major limitations of first generation imaging CDS tools include a lack of comprehensive evidence-based guidelines, limited ability to input detailed patient conditions and symptoms, and time-intensive user interfaces. Next-generation imaging CDS tools will attempt to close the information and interface gaps to provide more meaningful guidance to health care providers and improve the delivery of best practices to patients.
Journal of The American College of Radiology | 2018
Faiq Shaikh; Benjamin L. Franc; Erastus Allen; Evis Sala; Omer Awan; Kenneth Hendrata; Safwan Halabi; Sohaib Mohiuddin; Sana Malik; Dexter Hadley; Rasu Shrestha
Enterprise imaging has channeled various technological innovations to the field of clinical radiology, ranging from advanced imaging equipment and postacquisition iterative reconstruction tools to image analysis and computer-aided detection tools. More recently, the advancements in the field of quantitative image analysis coupled with machine learning-based data analytics, classification, and integration have ushered us into the era of radiomics, which has tremendous potential in clinical decision support as well as drug discovery. There are important issues to consider to incorporate radiomics as a clinically applicable system and a commercially viable solution. In this two-part series, we offer insights into the development of the translational pipeline for radiomics from methodology to clinical implementation (Part 1) and from that to enterprise development (Part 2).
Journal of The American College of Radiology | 2018
Faiq Shaikh; Benjamin L. Franc; Erastus Allen; Evis Sala; Omer Awan; Kenneth Hendrata; Safwan Halabi; Sohaib Mohiuddin; Sana Malik; Dexter Hadley; Rasu Shrestha
Enterprise imaging has channeled various technological innovations to the field of clinical radiology, ranging from advanced imaging equipment and postacquisition iterative reconstruction tools to image analysis and computer-aided detection tools. More recently, the advancement in the field of quantitative image analysis coupled with machine learning-based data analytics, classification, and integration has ushered in the era of radiomics, a paradigm shift that holds tremendous potential in clinical decision support as well as drug discovery. However, there are important issues to consider to incorporate radiomics into a clinically applicable system and a commercially viable solution. In this two-part series, we offer insights into the development of the translational pipeline for radiomics from methodology to clinical implementation (Part 1) and from that point to enterprise development (Part 2). In Part 2 of this two-part series, we study the components of the strategy pipeline, from clinical implementation to building enterprise solutions.
Journal of The American College of Radiology | 2017
Andrew K. Moriarity; Aaron Green; Chad Klochko; Matthew O’Brien; Safwan Halabi
OBJECTIVE To determine the appropriateness rating (AR) of advanced inpatient imaging requests that were not rated by prospective, point-of-care clinical decision support (CDS) using computerized provider order entry. MATERIALS AND METHODS During 30-day baseline and intervention periods, CDS generated an AR for advanced inpatient imaging requests (nuclear medicine, CT, and MRI) using provider-selected structured indications from pull-down menus in the computerized provider order entry portal. The AR was only displayed during the intervention, and providers were required to acknowledge the AR to finalize the request. Subsequently, the unstructured free text information accompanying all requests was reviewed, and the AR was revised when possible. The percentage of unrated requests and the overall AR, before and after radiologist review, were compared between periods and by provider type. RESULTS CDS software prospectively generated an AR for only 25.4% and 28.4% of baseline and intervention imaging requests, respectively; however, radiologist review generated an AR for 82.4% and 93.6% of the same requests. During the respective periods, the percentage of baseline and intervention imaging requests considered appropriate was 18.7% and 22.9% by prospective CDS software rating and increased to 82.4% and 88.7% with radiologist review. CONCLUSION Despite limited effective use of CDS software, the percentage of requests containing additional, relevant clinical information increased, and the majority of requests had overall high appropriateness when reviewed by a radiologist. Additional work is needed to improve the amount and quality of clinical information available to CDS software and to facilitate the entry of this information by appropriate end users.
JCO Clinical Cancer Informatics | 2017
Faiq Shaikh; Brian J. Kolowitz; Omer Awan; Hugo J. Aerts; Anna von Reden; Safwan Halabi; Sohaib Mohiuddin; Sana Malik; Rasu Shrestha; Christopher Deible
Radiomics is a quantitative approach to medical image analysis targeted at deciphering the morphologic and functional features of a lesion. Radiomic methods can be applied across various malignant conditions to identify tumor phenotype characteristics in the images that correlate with their likelihood of survival, as well as their association with the underlying biology. Identifying this set of characteristic features, called tumor signature, holds tremendous value in predicting the behavior and progression of cancer, which in turn has the potential to predict its response to various therapeutic options. We discuss the technical challenges encountered in the application of radiomics, in terms of methodology, workflow integration, and user experience, that need to be addressed to harness its true potential.
Contemporary Clinical Trials | 2015
Jeffrey G. Jarvik; Bryan A. Comstock; Kathryn T. James; Andrew L. Avins; Brian W. Bresnahan; Richard A. Deyo; Patrick H. Luetmer; Janna Friedly; Eric Meier; Daniel C. Cherkin; Laura S. Gold; Sean D. Rundell; Safwan Halabi; David F. Kallmes; Katherine W. Tan; Judith A. Turner; Larry Kessler; Danielle C. Lavallee; Kari A. Stephens; Patrick J. Heagerty
Journal of The American College of Radiology | 2018
Ruth C. Carlos; Charles E. Kahn; Safwan Halabi