Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sagi Tamir is active.

Publication


Featured researches published by Sagi Tamir.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Facile transfer of [2Fe-2S] clusters from the diabetes drug target mitoNEET to an apo-acceptor protein

John A. Zuris; Yael Harir; Andrea R. Conlan; Maya Shvartsman; Dorit Michaeli; Sagi Tamir; Mark L. Paddock; José N. Onuchic; Ron Mittler; Zvi Ioav Cabantchik; Patricia A. Jennings; Rachel Nechushtai

MitoNEET (mNT) is an outer mitochondrial membrane target of the thiazolidinedione diabetes drugs with a unique fold and a labile [2Fe-2S] cluster. The rare 1-His and 3-Cys coordination of mNT’s [2Fe-2S] leads to cluster lability that is strongly dependent on the presence of the single histidine ligand (His87). These properties of mNT are similar to known [2Fe-2S] shuttle proteins. Here we investigated whether mNT is capable of cluster transfer to acceptor protein(s). Facile [2Fe-2S] cluster transfer is observed between oxidized mNT and apo-ferredoxin (a-Fd) using UV-VIS spectroscopy and native-PAGE, as well as with a mitochondrial iron detection assay in cells. The transfer is unidirectional, proceeds to completion, and occurs with a second-order-reaction rate that is comparable to known iron-sulfur transfer proteins. Mutagenesis of His87 with Cys (H87C) inhibits transfer of the [2Fe-2S] clusters to a-Fd. This inhibition is beyond that expected from increased cluster kinetic stability, as the equivalently stable Lys55 to Glu (K55E) mutation did not inhibit transfer. The H87C mutant also failed to transfer its iron to mitochondria in HEK293 cells. The diabetes drug pioglitazone inhibits iron transfer from WT mNT to mitochondria, indicating that pioglitazone affects a specific property, [2Fe-2S] cluster transfer, in the cellular environment. This finding is interesting in light of the role of iron overload in diabetes. Our findings suggest a likely role for mNT in [2Fe-2S] and/or iron transfer to acceptor proteins and support the idea that pioglitazone’s antidiabetic mode of action may, in part, be to inhibit transfer of mNT’s [2Fe-2S] cluster.


Proceedings of the National Academy of Sciences of the United States of America | 2013

NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth

Yang-Sung Sohn; Sagi Tamir; Luhua Song; Dorit Michaeli; Imad Matouk; Andrea R. Conlan; Yael Harir; Sarah H. Holt; Vladimir Shulaev; Mark L. Paddock; Abraham Hochberg; Ioav Z. Cabanchick; José N. Onuchic; Patricia A. Jennings; Rachel Nechushtai; Ron Mittler

Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Integrated strategy reveals the protein interface between cancer targets Bcl-2 and NAF-1

Sagi Tamir; Shahar Rotem-Bamberger; Chen Katz; Faruck Morcos; Kendra L. Hailey; John A. Zuris; Charles Wang; Andrea R. Conlan; Colin H. Lipper; Mark L. Paddock; Ron Mittler; José N. Onuchic; Patricia A. Jennings; Assaf Friedler; Rachel Nechushtai

Significance Misregulation of cell growth and proliferation leads to the onset of various diseases, including cancer. Two proteins crucial for proper cellular control that were recently shown to affect cellular proliferation are Bcl-2, well-known for its role in programmed cell death, and the newly identified iron-sulfur protein NAF-1, localized near the mitochondrial outer membrane. In this report, we use a strategy utilizing a combination of experimental and computational techniques that provides valuable information to enable us to determine a molecular picture of the NAF-1–Bcl-2 interaction interface that is more complete than that obtained from any one technique alone. This interaction interface provides the basis from which novel drugs can be developed for the treatment of diseases such as cancer. Life requires orchestrated control of cell proliferation, cell maintenance, and cell death. Involved in these decisions are protein complexes that assimilate a variety of inputs that report on the status of the cell and lead to an output response. Among the proteins involved in this response are nutrient-deprivation autophagy factor-1 (NAF-1)- and Bcl-2. NAF-1 is a homodimeric member of the novel Fe-S protein NEET family, which binds two 2Fe-2S clusters. NAF-1 is an important partner for Bcl-2 at the endoplasmic reticulum to functionally antagonize Beclin 1-dependent autophagy [Chang NC, Nguyen M, Germain M, Shore GC (2010) EMBO J 29(3):606–618]. We used an integrated approach involving peptide array, deuterium exchange mass spectrometry (DXMS), and functional studies aided by the power of sufficient constraints from direct coupling analysis (DCA) to determine the dominant docked conformation of the NAF-1–Bcl-2 complex. NAF-1 binds to both the pro- and antiapoptotic regions (BH3 and BH4) of Bcl-2, as demonstrated by a nested protein fragment analysis in a peptide array and DXMS analysis. A combination of the solution studies together with a new application of DCA to the eukaryotic proteins NAF-1 and Bcl-2 provided sufficient constraints at amino acid resolution to predict the interaction surfaces and orientation of the protein–protein interactions involved in the docked structure. The specific integrated approach described in this paper provides the first structural information, to our knowledge, for future targeting of the NAF-1–Bcl-2 complex in the regulation of apoptosis/autophagy in cancer biology.


PLOS ONE | 2013

Nutrient-Deprivation Autophagy Factor-1 (NAF-1): Biochemical Properties of a Novel Cellular Target for Anti-Diabetic Drugs

Sagi Tamir; John A. Zuris; Lily Agranat; Colin H. Lipper; Andrea R. Conlan; Dorit Michaeli; Yael Harir; Mark L. Paddock; Ron Mittler; Zvi Ioav Cabantchik; Patricia A. Jennings; Rachel Nechushtai

Nutrient-deprivation autophagy factor-1 (NAF-1) (synonyms: Cisd2, Eris, Miner1, and Noxp70) is a [2Fe-2S] cluster protein immune-detected both in endoplasmic reticulum (ER) and mitochondrial outer membrane. It was implicated in human pathology (Wolfram Syndrome 2) and in BCL-2 mediated antagonization of Beclin 1-dependent autophagy and depression of ER calcium stores. To gain insights about NAF-1 functions, we investigated the biochemical properties of its 2Fe-2S cluster and sensitivity of those properties to small molecules. The structure of the soluble domain of NAF-1 shows that it forms a homodimer with each protomer containing a [2Fe-2S] cluster bound by 3 Cys and one His. NAF-1 has shown the unusual abilities to transfer its 2Fe-2S cluster to an apo-acceptor protein (followed in vitro by spectrophotometry and by native PAGE electrophoresis) and to transfer iron to intact mitochondria in cell models (monitored by fluorescence imaging with iron fluorescent sensors targeted to mitochondria). Importantly, the drug pioglitazone abrogates NAF-1s ability to transfer the cluster to acceptor proteins and iron to mitochondria. Similar effects were found for the anti-diabetes and longevity-promoting antioxidant resveratrol. These results reveal NAF-1 as a previously unidentified cell target of anti-diabetes thiazolidinedione drugs like pioglitazone and of the natural product resveratrol, both of which interact with the protein and stabilize its labile [2Fe-2S] cluster.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The Fe-S cluster-containing NEET proteins mitoNEET and NAF-1 as chemotherapeutic targets in breast cancer

Fang Bai; Faruck Morcos; Yang-Sung Sohn; Merav Darash-Yahana; Celso O. Rezende; Colin H. Lipper; Mark L. Paddock; Luhua Song; Yuting Luo; Sarah H. Holt; Sagi Tamir; Emmanuel A. Theodorakis; Patricia A. Jennings; José N. Onuchic; Ron Mittler; Rachel Nechushtai

Significance Cancer is a leading cause of mortality worldwide, with the identification of novel drug targets and chemotherapeutic agents being a high priority in the fight against it. The NEET proteins mitoNEET (mNT) and nutrient-deprivation autophagy factor-1 (NAF-1) were recently shown to be required for cancer cell proliferation. Utilizing a combination of experimental and computational techniques, we identified a derivative of the mitocan cluvenone that binds to NEET proteins at the vicinity of their 2Fe-2S clusters and facilitates their destabilization. The new drug displays a high specificity in the selective killing of human epithelial breast cancer cells, without any apparent effects on normal breast cells. Our results identify the 2Fe-2S clusters of NEET proteins as a novel target in the chemotherapeutic treatment of breast cancer. Identification of novel drug targets and chemotherapeutic agents is a high priority in the fight against cancer. Here, we report that MAD-28, a designed cluvenone (CLV) derivative, binds to and destabilizes two members of a unique class of mitochondrial and endoplasmic reticulum (ER) 2Fe-2S proteins, mitoNEET (mNT) and nutrient-deprivation autophagy factor-1 (NAF-1), recently implicated in cancer cell proliferation. Docking analysis of MAD-28 to mNT/NAF-1 revealed that in contrast to CLV, which formed a hydrogen bond network that stabilized the 2Fe-2S clusters of these proteins, MAD-28 broke the coordinative bond between the His ligand and the cluster’s Fe of mNT/NAF-1. Analysis of MAD-28 performed with control (Michigan Cancer Foundation; MCF-10A) and malignant (M.D. Anderson–metastatic breast; MDA-MB-231 or MCF-7) human epithelial breast cells revealed that MAD-28 had a high specificity in the selective killing of cancer cells, without any apparent effects on normal breast cells. MAD-28 was found to target the mitochondria of cancer cells and displayed a surprising similarity in its effects to the effects of mNT/NAF-1 shRNA suppression in cancer cells, causing a decrease in respiration and mitochondrial membrane potential, as well as an increase in mitochondrial iron content and glycolysis. As expected, if the NEET proteins are targets of MAD-28, cancer cells with suppressed levels of NAF-1 or mNT were less susceptible to the drug. Taken together, our results suggest that NEET proteins are a novel class of drug targets in the chemotherapeutic treatment of breast cancer, and that MAD-28 can now be used as a template for rational drug design for NEET Fe-S cluster-destabilizing anticancer drugs.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Breast cancer tumorigenicity is dependent on high expression levels of NAF-1 and the lability of its Fe-S clusters.

Merav Darash-Yahana; Yair Pozniak; Mingyang Lu; Yang-Sung Sohn; Ola Karmi; Sagi Tamir; Fang Bai; Luhua Song; Patricia A. Jennings; Eli Pikarsky; Tamar Geiger; José N. Onuchic; Ron Mittler; Rachel Nechushtai

Significance Elevated expression of the iron–sulfur (Fe-S) protein nutrient-deprivation autophagy factor-1 (NAF-1) is associated with the progression of multiple cancer types. Here we demonstrate that the lability of the Fe-S cluster of NAF-1 plays a key role in promoting breast cancer cell proliferation, tumor growth, and resistance of cancer cells to oxidative stress. Our study establishes an important role for the unique 3Cys-1His Fe-S cluster coordination structure of NAF-1 in promoting the development of breast cancer tumors and suggests the potential use of drugs that suppress NAF-1 accumulation or stabilize its cluster in the treatment of cancers that display high expression levels of NAF-1. Iron–sulfur (Fe-S) proteins are thought to play an important role in cancer cells mediating redox reactions, DNA replication, and telomere maintenance. Nutrient-deprivation autophagy factor-1 (NAF-1) is a 2Fe-2S protein associated with the progression of multiple cancer types. It is unique among Fe-S proteins because of its 3Cys-1His cluster coordination structure that allows it to be relatively stable, as well as to transfer its clusters to apo-acceptor proteins. Here, we report that overexpression of NAF-1 in xenograft breast cancer tumors results in a dramatic augmentation in tumor size and aggressiveness and that NAF-1 overexpression enhances the tolerance of cancer cells to oxidative stress. Remarkably, overexpression of a NAF-1 mutant with a single point mutation that stabilizes the NAF-1 cluster, NAF-1(H114C), in xenograft breast cancer tumors results in a dramatic decrease in tumor size that is accompanied by enhanced mitochondrial iron and reactive oxygen accumulation and reduced cellular tolerance to oxidative stress. Furthermore, treating breast cancer cells with pioglitazone that stabilizes the 3Cys-1His cluster of NAF-1 results in a similar effect on mitochondrial iron and reactive oxygen species accumulation. Taken together, our findings point to a key role for the unique 3Cys-1His cluster of NAF-1 in promoting rapid tumor growth through cellular resistance to oxidative stress. Cluster transfer reactions mediated by the overexpressed NAF-1 protein are therefore critical for inducing oxidative stress tolerance in cancer cells, leading to rapid tumor growth, and drugs that stabilize the NAF-1 cluster could be used as part of a treatment strategy for cancers that display high NAF-1 expression.


Journal of Cell Science | 2016

Activation of apoptosis in NAF-1-deficient human epithelial breast cancer cells.

Sarah H. Holt; Merav Darash-Yahana; Yang Sung Sohn; Luhua Song; Ola Karmi; Sagi Tamir; Dorit Michaeli; Yuting Luo; Mark L. Paddock; Patricia A. Jennings; José N. Onuchic; Rajeev K. Azad; Eli Pikarsky; Ioav Cabantchik; Rachel Nechushtai; Ron Mittler

ABSTRACT Maintaining iron (Fe) ion and reactive oxygen species homeostasis is essential for cellular function, mitochondrial integrity and the regulation of cell death pathways, and is recognized as a key process underlying the molecular basis of aging and various diseases, such as diabetes, neurodegenerative diseases and cancer. Nutrient-deprivation autophagy factor 1 (NAF-1; also known as CISD2) belongs to a newly discovered class of Fe-sulfur proteins that are localized to the outer mitochondrial membrane and the endoplasmic reticulum. It has been implicated in regulating homeostasis of Fe ions, as well as the activation of autophagy through interaction with BCL-2. Here we show that small hairpin (sh)RNA-mediated suppression of NAF-1 results in the activation of apoptosis in epithelial breast cancer cells and xenograft tumors. Suppression of NAF-1 resulted in increased uptake of Fe ions into cells, a metabolic shift that rendered cells more susceptible to a glycolysis inhibitor, and the activation of cellular stress pathways that are associated with HIF1α. Our studies suggest that NAF-1 is a major player in the metabolic regulation of breast cancer cells through its effects on cellular Fe ion distribution, mitochondrial metabolism and the induction of apoptosis. Summary: NAF-1 is a major player in the metabolic regulation of breast cancer cells through its effects on cellular Fe ion distribution, mitochondrial metabolism and the induction of apoptosis.


Acta Crystallographica Section D-biological Crystallography | 2014

A point mutation in the [2Fe-2S] cluster binding region of the NAF-1 protein (H114C) dramatically hinders the cluster donor properties.

Sagi Tamir; Yael Eisenberg-Domovich; Andrea R. Conlan; Jason T. Stofleth; Colin H. Lipper; Mark L. Paddock; Ron Mittler; Patricia A. Jennings; Oded Livnah; Rachel Nechushtai

NAF-1 is an important [2Fe-2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression by knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe-2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Å resolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe-2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Å resolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe-2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe-2S] cluster of NAF-1 in vivo.


PLOS ONE | 2017

Interactions between mitoNEET and NAF-1 in cells

Ola Karmi; Sarah H. Holt; Luhua Song; Sagi Tamir; Yuting Luo; Fang Bai; Ammar Adenwalla; Merav Darash-Yahana; Yang-Sung Sohn; Patricia A. Jennings; Rajeev K. Azad; José N. Onuchic; Faruck Morcos; Rachel Nechushtai; Ron Mittler

The NEET proteins mitoNEET (mNT) and nutrient-deprivation autophagy factor-1 (NAF-1) are required for cancer cell proliferation and resistance to oxidative stress. NAF-1 and mNT are also implicated in a number of other human pathologies including diabetes, neurodegeneration and cardiovascular disease, as well as in development, differentiation and aging. Previous studies suggested that mNT and NAF-1 could function in the same pathway in mammalian cells, preventing the over-accumulation of iron and reactive oxygen species (ROS) in mitochondria. Nevertheless, it is unknown whether these two proteins directly interact in cells, and how they mediate their function. Here we demonstrate, using yeast two-hybrid, in vivo bimolecular fluorescence complementation (BiFC), direct coupling analysis (DCA), RNA-sequencing, ROS and iron imaging, and single and double shRNA lines with suppressed mNT, NAF-1 and mNT/NAF-1 expression, that mNT and NAF-1 directly interact in mammalian cells and could function in the same cellular pathway. We further show using an in vitro cluster transfer assay that mNT can transfer its clusters to NAF-1. Our study highlights the possibility that mNT and NAF-1 function as part of an iron-sulfur (2Fe-2S) cluster relay to maintain the levels of iron and Fe-S clusters under control in the mitochondria of mammalian cells, thereby preventing the activation of apoptosis and/or autophagy and supporting cellular proliferation.


Biochimica et Biophysica Acta | 2015

Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease.

Sagi Tamir; Mark L. Paddock; Merav Darash-Yahana-Baram; Sarah H. Holt; Yang Sung Sohn; Lily Agranat; Dorit Michaeli; Jason T. Stofleth; Colin H. Lipper; Faruck Morcos; Ioav Cabantchik; José N. Onuchic; Patricia A. Jennings; Ron Mittler; Rachel Nechushtai

Collaboration


Dive into the Sagi Tamir's collaboration.

Top Co-Authors

Avatar

Rachel Nechushtai

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron Mittler

University of North Texas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorit Michaeli

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luhua Song

University of North Texas

View shared research outputs
Top Co-Authors

Avatar

Sarah H. Holt

University of North Texas

View shared research outputs
Researchain Logo
Decentralizing Knowledge