Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sagrario Ortega is active.

Publication


Featured researches published by Sagrario Ortega.


Nature | 2009

A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity

Rosa M. Marión; Katerina Strati; Han Li; Matilde Murga; Raquel Blanco; Sagrario Ortega; Oscar Fernandez-Capetillo; Manuel Serrano; Maria A. Blasco

The reprogramming of differentiated cells to pluripotent cells (induced pluripotent stem (iPS) cells) is known to be an inefficient process. We recently reported that cells with short telomeres cannot be reprogrammed to iPS cells despite their normal proliferation rates, probably reflecting the existence of ‘reprogramming barriers’ that abort the reprogramming of cells with uncapped telomeres. Here we show that p53 (also known as Trp53 in mice and TP53 in humans) is critically involved in preventing the reprogramming of cells carrying various types of DNA damage, including short telomeres, DNA repair deficiencies, or exogenously inflicted DNA damage. Reprogramming in the presence of pre-existing, but tolerated, DNA damage is aborted by the activation of a DNA damage response and p53-dependent apoptosis. Abrogation of p53 allows efficient reprogramming in the face of DNA damage and the generation of iPS cells carrying persistent DNA damage and chromosomal aberrations. These observations indicate that during reprogramming cells increase their intolerance to different types of DNA damage and that p53 is critical in preventing the generation of human and mouse pluripotent cells from suboptimal parental cells.


Nature | 2009

The Ink4/Arf locus is a barrier for iPS cell reprogramming.

Han Li; Manuel Collado; Aranzazu Villasante; Katerina Strati; Sagrario Ortega; Marta Cañamero; Maria A. Blasco; Manuel Serrano

The mechanisms involved in the reprogramming of differentiated cells into induced pluripotent stem (iPS) cells by the three transcription factors Oct4 (also known as Pou5f1), Klf4 and Sox2 remain poorly understood. The Ink4/Arf locus comprises the Cdkn2a–Cdkn2b genes encoding three potent tumour suppressors, namely p16Ink4a, p19Arf and p15Ink4b, which are basally expressed in differentiated cells and upregulated by aberrant mitogenic signals. Here we show that the locus is completely silenced in iPS cells, as well as in embryonic stem (ES) cells, acquiring the epigenetic marks of a bivalent chromatin domain, and retaining the ability to be reactivated after differentiation. Cell culture conditions during reprogramming enhance the expression of the Ink4/Arf locus, further highlighting the importance of silencing the locus to allow proliferation and reprogramming. Indeed, the three factors together repress the Ink4/Arf locus soon after their expression and concomitant with the appearance of the first molecular markers of ‘stemness’. This downregulation also occurs in cells carrying the oncoprotein large-T, which functionally inactivates the pathways regulated by the Ink4/Arf locus, thus indicating that the silencing of the locus is intrinsic to reprogramming and not the result of a selective process. Genetic inhibition of the Ink4/Arf locus has a profound positive effect on the efficiency of iPS cell generation, increasing both the kinetics of reprogramming and the number of emerging iPS cell colonies. In murine cells, Arf, rather than Ink4a, is the main barrier to reprogramming by activation of p53 (encoded by Trp53) and p21 (encoded by Cdkn1a); whereas, in human fibroblasts, INK4a is more important than ARF. Furthermore, organismal ageing upregulates the Ink4/Arf locus and, accordingly, reprogramming is less efficient in cells from old organisms, but this defect can be rescued by inhibiting the locus with a short hairpin RNA. All together, we conclude that the silencing of Ink4/Arf locus is rate-limiting for reprogramming, and its transient inhibition may significantly improve the generation of iPS cells.


Nature Genetics | 2003

Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice

Sagrario Ortega; Ignacio Prieto; Junko Odajima; Alberto Martín; Pierre Dubus; Rocio Sotillo; José Luis Barbero; Marcos Malumbres; Mariano Barbacid

We targeted the locus encoding the cyclin-dependent kinase 2 (CDK2) by homologous recombination in mouse embryonic stem (ES) cells. Embryonic fibroblasts lacking CDK2 proliferate normally and become immortal after continuous passage in culture. Elimination of a conditional Cdk2 allele in immortal cells does not have a significant effect on proliferation. Cdk2−/− mice are viable and survive for up to two years, indicating that CDK2 is also dispensable for proliferation and survival of most cell types. But CDK2 is essential for completion of prophase I during meiotic cell division in male and female germ cells, an unforeseen role for this cell cycle kinase.


Biochimica et Biophysica Acta | 2002

Cyclin D-dependent kinases, INK4 inhibitors and cancer

Sagrario Ortega; Marcos Malumbres; Mariano Barbacid

The Cyclin D-Cdk4,6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The components of this pathway are gene families with a high level of structural and functional redundancy and are expressed in an overlapping fashion in most tissues and cell types. Using classical transgenic technology as well as gene-targeting in ES cells, a series of mouse models have been developed to study the in vivo function of individual components of this pathway in both normal homeostasis and tumor development. These models have proven to be useful to define specific as well as redundant roles among members of these cell cycle regulatory gene families. This pathway is deregulated in the vast majority of human tumors by genetic and epigenetic alterations that target at least some of its key members such as Cyclin D1, Cdk4, INK4a and INK4b, pRb etc. As a consequence, some of these molecules are currently being considered as targets for cancer therapy, and several novel molecules, such as Cdk inhibitors, are under development as potential anti-cancer drugs.


Cell | 2004

Mammalian Cells Cycle without the D-Type Cyclin-Dependent Kinases Cdk4 and Cdk6

Marcos Malumbres; Rocio Sotillo; David Santamaría; Javier Galán; Ana Cerezo; Sagrario Ortega; Pierre Dubus; Mariano Barbacid

Cdk4 and Cdk6 are thought to be essential for initiation of the cell cycle in response to mitogenic stimuli. Previous studies have shown that Cdk4 is dispensable for proliferation in most cell types, an observation attributed to a putative compensatory role by Cdk6. Cdk6-null mice are viable and develop normally although hematopoiesis is slightly impaired. Embryos defective for Cdk4 and Cdk6 die during the late stages of embryonic development due to severe anemia. However, these embryos display normal organogenesis and most cell types proliferate normally. In vitro, embryonic fibroblasts lacking Cdk4 and Cdk6 proliferate and become immortal upon serial passage. Moreover, quiescent Cdk4/Cdk6-null cells respond to serum stimulation and enter S phase with normal kinetics although with lower efficiency. These results indicate that D-type cyclin-dependent kinases are not essential for cell cycle entry and suggest the existence of alternative mechanisms to initiate cell proliferation upon mitogenic stimulation.


Cell Stem Cell | 2009

Telomeres Acquire Embryonic Stem Cell Characteristics in Induced Pluripotent Stem Cells

Rosa M. Marión; Katerina Strati; Han Li; Agueda M. Tejera; Stefan Schoeftner; Sagrario Ortega; Manuel Serrano; Maria A. Blasco

Telomere shortening is associated with organismal aging. iPS cells have been recently derived from old patients; however, it is not known whether telomere chromatin acquires the same characteristics as in ES cells. We show here that telomeres are elongated in iPS cells compared to the parental differentiated cells both when using four (Oct3/4, Sox2, Klf4, cMyc) or three (Oct3/4, Sox2, Klf4) reprogramming factors and both from young and aged individuals. We demonstrate genetically that, during reprogramming, telomere elongation is usually mediated by telomerase and that iPS telomeres acquire the epigenetic marks of ES cells, including a low density of trimethylated histones H3K9 and H4K20 and increased abundance of telomere transcripts. Finally, reprogramming efficiency of cells derived from increasing generations of telomerase-deficient mice shows a dramatic decrease in iPS cell efficiency, a defect that is restored by telomerase reintroduction. Together, these results highlight the importance of telomere biology for iPS cell generation and functionality.


Molecular and Cellular Biology | 2000

Compensation by Fibroblast Growth Factor 1 (FGF1) Does Not Account for the Mild Phenotypic Defects Observed in FGF2 Null Mice

David L. Miller; Sagrario Ortega; Omar Bashayan; Ross Basch; Claudio Basilico

ABSTRACT Fibroblast growth factor 1 (FGF1) and FGF2, the prototypic members of the FGF family of growth factors, have been implicated in a variety of physiological and pathological processes. Unlike most other FGFs, FGF1 and FGF2 are ubiquitously expressed and are not efficiently secreted. Gene knockouts in mice have previously demonstrated a role for FGF2 in brain development, blood pressure regulation, and wound healing. The relatively mild phenotypic defects associated with FGF2 deletion led to the hypothesis that the continued expression of other FGFs partially compensated for the absence of FGF2 in these mice. We now report our generation of mice lacking FGF1 and their use, in combination with our previously described FGF2 null mice, to produce mice lacking both FGF1 and FGF2. FGF1-FGF2 double-knockout mice are viable and fertile and do not display any gross phenotypic defects. In the double-knockout mice we observed defects that were similar in extent to those previously described for the FGF2 null mice. Differences in the organization of neurons of the frontal motor cortex and in the rates of wound healing were observed. We also observed in FGF2−/− mice and in FGF1-FGF2 double-knockout mice novel impairments in hematopoiesis that were similar in severity. Essentially no abnormalities were found in mice lacking only FGF1. Our results suggest that the relatively mild defects in FGF2 knockout animals are not a consequence of compensation by FGF1 and suggest highly restricted roles for both factors under normal developmental and physiological conditions.


The EMBO Journal | 2000

Limited overlapping roles of P15INK4b and P18INK4c cell cycle inhibitors in proliferation and tumorigenesis

Esther Latres; Marcos Malumbres; Rocío Sotillo; Javier Martin; Sagrario Ortega; Juan Martín-Caballero; Juana M. Flores; Carlos Cordon-Cardo; Mariano Barbacid

Entry of quiescent cells into the cell cycle is driven by the cyclin D‐dependent kinases Cdk4 and Cdk6. These kinases are negatively regulated by the INK4 cell cycle inhibitors. We report the generation of mice defective in P15INK4b and P18INK4c. Ablation of these genes, either alone or in combination, does not abrogate cell contact inhibition or senescence of mouse embryo fibroblasts in culture. However, loss of P15INK4b, but not of P18INK4c, confers proliferative advantage to these cells and makes them more sensitive to transformation by H‐ras oncogenes. In vivo, ablation of P15INK4b and P18INK4c genes results in lymphoproliferative disorders and tumor formation. Mice lacking P18INK4c have deregulated epithelial cell growth leading to the formation of cysts, mostly in the cortical region of the kidneys and the mammary epithelium. Loss of both P15INK4b and P18INK4c does not result in significantly distinct phenotypic manifestations except for the appearance of cysts in additional tissues. These results indicate that P15INK4b and P18IKN4c are tumor suppressor proteins that act in different cellular lineages and/or pathways with limited compensatory roles.


Nature | 2013

Reprogramming in vivo produces teratomas and iPS cells with totipotency features

Maria Alba Abad; Lluc Mosteiro; Cristina Pantoja; Marta Cañamero; Teresa Rayon; Inmaculada Ors; Osvaldo Graña; Diego Megías; Orlando Domínguez; Dolores Martínez; Miguel Manzanares; Sagrario Ortega; Manuel Serrano

Reprogramming of adult cells to generate induced pluripotent stem cells (iPS cells) has opened new therapeutic opportunities; however, little is known about the possibility of in vivo reprogramming within tissues. Here we show that transitory induction of the four factors Oct4, Sox2, Klf4 and c-Myc in mice results in teratomas emerging from multiple organs, implying that full reprogramming can occur in vivo. Analyses of the stomach, intestine, pancreas and kidney reveal groups of dedifferentiated cells that express the pluripotency marker NANOG, indicative of in situ reprogramming. By bone marrow transplantation, we demonstrate that haematopoietic cells can also be reprogrammed in vivo. Notably, reprogrammable mice present circulating iPS cells in the blood and, at the transcriptome level, these in vivo generated iPS cells are closer to embryonic stem cells (ES cells) than standard in vitro generated iPS cells. Moreover, in vivo iPS cells efficiently contribute to the trophectoderm lineage, suggesting that they achieve a more plastic or primitive state than ES cells. Finally, intraperitoneal injection of in vivo iPS cells generates embryo-like structures that express embryonic and extraembryonic markers. We conclude that reprogramming in vivo is feasible and confers totipotency features absent in standard iPS or ES cells. These discoveries could be relevant for future applications of reprogramming in regenerative medicine.


The EMBO Journal | 2001

Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors

Roco Sotillo; Pierre Dubus; Javier Martn; Ernesto de la Cueva; Sagrario Ortega; Marcos Malumbres; Mariano Barbacid

We have introduced a point mutation in the first coding exon of the locus encoding the cyclin‐dependent kinase 4 (Cdk4) by homologous recombination in embryonic stem cells. This mutation (replacement of Arg24 by Cys) was first found in patients with hereditary melanoma and renders Cdk4 insensitive to INK4 inhibitors. Here, we report that primary embryonic fibroblasts expressing the mutant Cdk4R24C kinase are immortal and susceptible to transformation by Ras oncogenes. Moreover, homozygous Cdk4R24C/R24C mutant mice develop multiple tumors with almost complete penetrance. The most common neoplasia (endocrine tumors and hemangiosarcomas) are similar to those found in pRb+/− and p53−/− mice. This Cdk4 mutation cooperates with p53 and p27Kip1 deficiencies in decreasing tumor latency and favoring development of specific tumor types. These results provide experimental evidence for a central role of Cdk4 regulation in cancer and provide a valuable model for testing the potential anti‐tumor effect of Cdk4 inhibitors in vivo.

Collaboration


Dive into the Sagrario Ortega's collaboration.

Top Co-Authors

Avatar

Marcos Malumbres

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria A. Blasco

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javier Martin

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Manuel Serrano

Catalan Institution for Research and Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Marta Cañamero

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Diego Megías

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

David Olmeda

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge