Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sahand Pirbadian is active.

Publication


Featured researches published by Sahand Pirbadian.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components

Sahand Pirbadian; Sarah E. Barchinger; Kar Man Leung; Hye Suk Byun; Yamini Jangir; Rachida A. Bouhenni; Samantha B. Reed; Margaret F. Romine; Daad A. Saffarini; Liang Shi; Yuri A. Gorby; John H. Golbeck; Mohamed Y. El-Naggar

Significance Bacterial nanowires from Shewanella oneidensis MR-1 were previously shown to be conductive under nonphysiological conditions. Intense debate still surrounds the molecular makeup, identity of the charge carriers, and cellular respiratory impact of bacterial nanowires. In this work, using in vivo fluorescence measurements, immunolabeling, and quantitative gene expression analysis, we demonstrate that S. oneidensis MR-1 nanowires are extensions of the outer membrane and periplasm, rather than pilin-based structures, as previously thought. We also demonstrate that the outer membrane multiheme cytochromes MtrC and OmcA localize to these membrane extensions, directly supporting one of the two models of electron transport through the nanowires; consistent with this, production of bacterial nanowires correlates with an increase in cellular reductase activity. Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic–abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.


Physical Chemistry Chemical Physics | 2012

Multistep hopping and extracellular charge transfer in microbial redox chains

Sahand Pirbadian; Mohamed Y. El-Naggar

Dissimilatory metal-reducing bacteria are microorganisms that gain energy by transferring respiratory electrons to extracellular solid-phase electron acceptors. In addition to its importance for physiology and natural environmental processes, this form of metabolism is being investigated for energy conversion and fuel production in bioelectrochemical systems, where microbes are used as biocatalysts at electrodes. One proposed strategy to accomplish this extracellular charge transfer involves forming a conductive pathway to electrodes by incorporating redox components on outer cell membranes and along extracellular appendages known as microbial nanowires within biofilms. To describe extracellular charge transfer in microbial redox chains, we employed a model based on incoherent hopping between sites in the chain and an interfacial treatment of electrochemical interactions with the surrounding electrodes. Based on this model, we calculated the current-voltage (I-V) characteristics and found the results to be in good agreement with I-V measurements across and along individual microbial nanowires produced by the bacterium Shewanella oneidensis MR-1. Based on our analysis, we propose that multistep hopping in redox chains constitutes a viable strategy for extracellular charge transfer in microbial biofilms.


IEEE Journal on Selected Areas in Communications | 2014

A Stochastic Model for Electron Transfer in Bacterial Cables

Nicolò Michelusi; Sahand Pirbadian; Mohamed Y. El-Naggar; Urbashi Mitra

Biological systems are known to communicate by diffusing chemical signals in the surrounding medium. However, most of the recent literature has neglected the electron transfer mechanism occurring among living cells, and its role in cell-cell communication. Each cell relies on a continuous flow of electrons from its electron donor to its electron acceptor through the electron transport chain to produce energy in the form of the molecule adenosine triphosphate, and to sustain the cells vital operations and functions. While the importance of biological electron transfer is well-known for individual cells, the past decade has also brought about remarkable discoveries of multi-cellular microbial communities that transfer electrons between cells and across centimeter length scales, e.g., biofilms and multi-cellular bacterial cables. These experimental observations open up new frontiers in the design of electron-based communications networks in microbial communities, which may coexist with the more well-known communication strategies based on molecular diffusion, while benefiting from a much shorter communication delay. This paper develops a stochastic model that links the electron transfer mechanism to the energetic state of the cell. The model is also extensible to larger communities, by allowing for electron exchange between neighboring cells. Moreover, the parameters of the stochastic model are fit to experimental data available in the literature, and are shown to provide a good fit.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography

Poorna Subramanian; Sahand Pirbadian; Mohamed Y. El-Naggar; Grant J. Jensen

Significance Recent findings from in vivo fluorescence and immunolabeling measurements hinted at the possible role of outer membrane (OM) extensions as Shewanella oneidensis MR-1 nanowires. However, a detailed understanding of the architecture and electron transport mechanism along OM extensions was lacking. In this work, we report a unique setup for correlative light and electron microscopy of Shewanella OM extensions and demonstrate that they are chains of interconnected outer membrane vesicles with densities, consistent with periplasmic and OM cytochromes, distributed along their length. We propose, based on the packing density of cytochromes measured from electron cryotomograms, that the electron transport mechanism involves a combination of direct electron hopping and diffusion of electron carriers. Bacterial nanowires have garnered recent interest as a proposed extracellular electron transfer (EET) pathway that links the bacterial electron transport chain to solid-phase electron acceptors away from the cell. Recent studies showed that Shewanella oneidensis MR-1 produces outer membrane (OM) and periplasmic extensions that contain EET components and hinted at their possible role as bacterial nanowires. However, their fine structure and distribution of cytochrome electron carriers under native conditions remained unclear, making it difficult to evaluate the potential electron transport (ET) mechanism along OM extensions. Here, we report high-resolution images of S. oneidensis OM extensions, using electron cryotomography (ECT). We developed a robust method for fluorescence light microscopy imaging of OM extension growth on electron microscopy grids and used correlative light and electron microscopy to identify and image the same structures by ECT. Our results reveal that S. oneidensis OM extensions are dynamic chains of interconnected outer membrane vesicles (OMVs) with variable dimensions, curvature, and extent of tubulation. Junction densities that potentially stabilize OMV chains are seen between neighboring vesicles in cryotomograms. By comparing wild type and a cytochrome gene deletion mutant, our ECT results provide the likely positions and packing of periplasmic and outer membrane proteins consistent with cytochromes. Based on the observed cytochrome packing density, we propose a plausible ET path along the OM extensions involving a combination of direct hopping and cytochrome diffusion. A mean-field calculation, informed by the observed ECT cytochrome density, supports this proposal by revealing ET rates on par with a fully packed cytochrome network.


Applied and Environmental Microbiology | 2016

Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation

Sarah E. Barchinger; Sahand Pirbadian; Christine Sambles; Carol S. Baker; Kar Man Leung; Nigel John Burroughs; Mohamed Y. El-Naggar; John H. Golbeck

ABSTRACT In limiting oxygen as an electron acceptor, the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 rapidly forms nanowires, extensions of its outer membrane containing the cytochromes MtrC and OmcA needed for extracellular electron transfer. RNA sequencing (RNA-Seq) analysis was employed to determine differential gene expression over time from triplicate chemostat cultures that were limited for oxygen. We identified 465 genes with decreased expression and 677 genes with increased expression. The coordinated increased expression of heme biosynthesis, cytochrome maturation, and transport pathways indicates that S. oneidensis MR-1 increases cytochrome production, including the transcription of genes encoding MtrA, MtrC, and OmcA, and transports these decaheme cytochromes across the cytoplasmic membrane during electron acceptor limitation and nanowire formation. In contrast, the expression of the mtrA and mtrC homologs mtrF and mtrD either remains unaffected or decreases under these conditions. The ompW gene, encoding a small outer membrane porin, has 40-fold higher expression during oxygen limitation, and it is proposed that OmpW plays a role in cation transport to maintain electrical neutrality during electron transfer. The genes encoding the anaerobic respiration regulator cyclic AMP receptor protein (CRP) and the extracytoplasmic function sigma factor RpoE are among the transcription factor genes with increased expression. RpoE might function by signaling the initial response to oxygen limitation. Our results show that RpoE activates transcription from promoters upstream of mtrC and omcA. The transcriptome and mutant analyses of S. oneidensis MR-1 nanowire production are consistent with independent regulatory mechanisms for extending the outer membrane into tubular structures and for ensuring the electron transfer function of the nanowires. IMPORTANCE Shewanella oneidensis MR-1 has the capacity to transfer electrons to its external surface using extensions of the outer membrane called bacterial nanowires. These bacterial nanowires link the cells respiratory chain to external surfaces, including oxidized metals important in bioremediation, and explain why S. oneidensis can be utilized as a component of microbial fuel cells, a form of renewable energy. In this work, we use differential gene expression analysis to focus on which genes function to produce the nanowires and promote extracellular electron transfer during oxygen limitation. Among the genes that are expressed at high levels are those encoding cytochrome proteins necessary for electron transfer. Shewanella coordinates the increased expression of regulators, metabolic pathways, and transport pathways to ensure that cytochromes efficiently transfer electrons along the nanowires.


2015 International Conference on Computing, Networking and Communications (ICNC) | 2015

Queueing theory as a modeling tool for bacterial interaction: Implications for microbial fuel cells

Urbashi Mitra; Nicolò Michelusi; Sahand Pirbadian; Hana Koorehdavoudi; Mohamed Y. El-Naggar; Paul Bogdan

Microbial communities play a significant role in bioremediation, plant growth promotion, human and animal digestion, drive elemental cycles, the carbon-cycle and cleaning water. They are also posed to be the engines of renewable energy via microbial fuel cells which can reverse the process of electrosynthesis. While the diffusion of chemical signals in the surrounding medium of biological systems has been heavily studied, the electron transfer mechanism occurring in living cells and its role in cell-cell interaction is less understood. Recent experimental observations open up new frontiers in the design of electron-based communication and energy networks in microbial communities, which may coexist with the more well-known interaction strategies based on molecular diffusion. In this position paper, a series of modeling strategies is proposed, informed by experiment, to describe the large-scale interaction of bacterial communities. A new queueing theoretic model for the internal workings of a bacterium is described as well as methods based on statistical physics to scale up the queuing models. The goal is to couple modeling with experiment to optimize the design of microbial fuel cells.


Mbio | 2018

Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

Annette R. Rowe; Pournami Rajeev; Abhiney Jain; Sahand Pirbadian; Akihiro Okamoto; Jeffrey A. Gralnick; Mohamed Y. El-Naggar; Kenneth H. Nealson

ABSTRACT While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. IMPORTANCE The majority of our knowledge of the physiology of extracellular electron transfer derives from studies of electrons moving to the exterior of the cell. The physiological mechanisms and/or consequences of the reverse processes are largely uncharacterized. This report demonstrates that when coupled to oxygen reduction, electrode oxidation can result in cellular energy acquisition. This respiratory process has potentially important implications for how microorganisms persist in energy-limited environments, such as reduced sediments under changing redox conditions. From an applied perspective, this work has important implications for microbially catalyzed processes on electrodes, particularly with regard to understanding models of cellular conversion of electrons from cathodes to microbially synthesized products. The majority of our knowledge of the physiology of extracellular electron transfer derives from studies of electrons moving to the exterior of the cell. The physiological mechanisms and/or consequences of the reverse processes are largely uncharacterized. This report demonstrates that when coupled to oxygen reduction, electrode oxidation can result in cellular energy acquisition. This respiratory process has potentially important implications for how microorganisms persist in energy-limited environments, such as reduced sediments under changing redox conditions. From an applied perspective, this work has important implications for microbially catalyzed processes on electrodes, particularly with regard to understanding models of cellular conversion of electrons from cathodes to microbially synthesized products.


conference on information sciences and systems | 2014

A model for electron transfer and cell energetics in bacterial cables

Nicolò Michelusi; Sahand Pirbadian; Mohamed Y. El-Naggar; Urbashi Mitra

Biological systems are known to communicate by diffusing chemical signals in the surrounding medium. However, most of the recent literature has neglected the electron transfer mechanism occurring amongst living cells, and its role in cell-to-cell communication. While the importance of biological electron transfer is well-known for individual cells, the past decade has also brought about remarkable discoveries of multi-cellular microbial communities that transfer electrons between cells and across centimeter length scales, e.g., biofilms and multi-cellular bacterial cables. This paper develops a stochastic model that links electron transfer to the energetic state of the cell. The model is also extensible to larger communities, by allowing for electron exchange between neighboring cells. The proposed model is a first step towards the design of electron-based communication networks in microbial communities, which may co-exist with the more well-known communication strategies based on molecular diffusion, while benefiting from a much shorter signaling delay.


bioRxiv | 2018

Stable sub-complexes observed in situ suggest a modular assembly pathway of the bacterial flagellar motor

Mohammed Kaplan; Poorna Subramanian; Debnath Ghosal; Catherine M. Oikonomou; Sahand Pirbadian; Ruth Starwalt-Lee; Jeffrey A. Gralnick; Mohamed Y. El-Naggar; Grant J. Jensen

The self-assembly of cellular macromolecular machines such as the bacterial flagellar motor requires the spatio-temporal synchronization of gene expression, protein localization and association of a dozen or more unique components. In Salmonella and Escherichia coli, a sequential, outward assembly mechanism has been proposed for the flagellar motor starting from the inner membrane, with each subsequent component stabilizing the last. Here, using electron cryo-tomography of intact Legionella pneumophila, Pseudomonas aeruginosa and Shewanella oneidensis cells, we observe stable outer-membrane-embedded sub-complexes of the flagellar motor. These sub-complexes consist of the periplasmic embellished P- and L-rings, in the absence of other flagellar components, and bend the membrane inward dramatically. Additionally, we also observe independent inner-membrane sub-complexes consisting of the C- and MS-rings and export apparatus. These results suggest an alternate model for flagellar motor assembly in which outer- and inner-membrane-associated sub-complexes form independently and subsequently join, enabling later steps of flagellar production to proceed.


bioRxiv | 2018

The structural complexity of the Gammaproteobacteria flagellar motor is related to the type of its torque-generating stators

Mohammed Kaplan; Debnath Ghosal; Poorna Subramanian; Catherine M. Oikonomou; Andreas Kjær; Sahand Pirbadian; Davi R. Ortega; Mohamed Y. El-Naggar; Grant J. Jensen

The bacterial flagellar motor is a cell-envelope-embedded macromolecular machine that functions as a propeller to move the cell. Rather than being an invariant machine, the flagellar motor exhibits significant variability between species, allowing bacteria to adapt to, and thrive in, a wide range of environments. For instance, different torque-generating stator modules allow motors to operate in conditions with different pH and sodium concentrations and some motors are adapted to drive motility in high-viscosity environments. How such diversity evolved is unknown. Here we use electron cryo-tomography to determine the in situ macromolecular structures of the flagellar motors of three Gammaproteobacteria species: Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis MR-1, providing the first views of intact motors with dual stator systems. Complementing our imaging with bioinformatics analysis, we find a correlation between the stator system of the motor and its structural complexity. Motors with a single H+-driven stator system have only the core P- and L-rings in their periplasm; those with dual H+-driven stator systems have an extra component elaborating their P-ring; and motors with Na+- (or dual Na+-H+)- driven stator systems have additional rings surrounding both their P- and L-rings. Our results suggest an evolution of structural complexity that may have enabled pathogenic bacteria like L. pneumophila and P. aeruginosa to colonize higher-viscosity environments in animal hosts.

Collaboration


Dive into the Sahand Pirbadian's collaboration.

Top Co-Authors

Avatar

Mohamed Y. El-Naggar

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Grant J. Jensen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Poorna Subramanian

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John H. Golbeck

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Sarah E. Barchinger

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Hye Suk Byun

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kar Man Leung

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Urbashi Mitra

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge