Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sahdeo Prasad is active.

Publication


Featured researches published by Sahdeo Prasad.


Aaps Journal | 2009

Curcumin and cancer cells: how many ways can curry kill tumor cells selectively?

Jayaraj Ravindran; Sahdeo Prasad; Bharat B. Aggarwal

Cancer is a hyperproliferative disorder that is usually treated by chemotherapeutic agents that are toxic not only to tumor cells but also to normal cells, so these agents produce major side effects. In addition, these agents are highly expensive and thus not affordable for most. Moreover, such agents cannot be used for cancer prevention. Traditional medicines are generally free of the deleterious side effects and usually inexpensive. Curcumin, a component of turmeric (Curcuma longa), is one such agent that is safe, affordable, and efficacious. How curcumin kills tumor cells is the focus of this review. We show that curcumin modulates growth of tumor cells through regulation of multiple cell signaling pathways including cell proliferation pathway (cyclin D1, c-myc), cell survival pathway (Bcl-2, Bcl-xL, cFLIP, XIAP, c-IAP1), caspase activation pathway (caspase-8, 3, 9), tumor suppressor pathway (p53, p21) death receptor pathway (DR4, DR5), mitochondrial pathways, and protein kinase pathway (JNK, Akt, and AMPK). How curcumin selectively kills tumor cells, and not normal cells, is also described in detail.


Cancer Research and Treatment | 2014

Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice.

Sahdeo Prasad; Amit K. Tyagi; Bharat B. Aggarwal

Curcumin (diferuloylmethane) is a yellow pigment present in the spice turmeric (Curcuma longa) that has been associated with antioxidant, anti-inflammatory, anticancer, antiviral, and antibacterial activities as indicated by over 6,000 citations. In addition, over one hundred clinical studies have been carried out with curcumin. One of the major problems with curcumin is perceived to be the bioavailability. How curcumin should be delivered in vivo, how bioavailable is it, how well curcumin is absorbed and how it is metabolized, is the focus of this review. Various formulations of curcumin that are currently available are also discussed.


Natural Product Reports | 2011

Multitargeting by curcumin as revealed by molecular interaction studies.

Subash C. Gupta; Sahdeo Prasad; Ji Hye Kim; Sridevi Patchva; Lauren J. Webb; Indira K. Priyadarsini; Bharat B. Aggarwal

Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca(2+) ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto-enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting binding sites, has also been used to further characterize curcumins binding sites. Furthermore, the ability of curcumin to bind directly to carrier proteins improves its solubility and bioavailability. In this review, we focus on how curcumin directly targets signaling molecules, as well as the different forces that bind the curcumin-protein complex and how this interaction affects the biological properties of proteins. We will also discuss various analogues of curcumin designed to bind selective targets with increased affinity.


Molecular and Cellular Biochemistry | 2010

NF-κB and cancer: how intimate is this relationship

Sahdeo Prasad; Jayaraj Ravindran; Bharat B. Aggarwal

NF-κB, a transcription factor first discovered in 1986, is now known to be closely connected to the process of tumorogenesis based on a multiplicity of evidence. (1) NF-κB is activated in response to tobacco, stress, dietary agents, obesity, alcohol, infectious agents, irradiation, and environmental stimuli that account for as much as 95% of all cancers. (2) The transcription factor has been linked with transformation of cells. (3) It is constitutively active in most tumor cells. (4) It has also been linked with the survival of cancer stem cells, an early progenitor cell that has acquired self-renewal potential. (5) NF-κB regulates the expression of most anti-apoptotic gene products associated with the survival of the tumor. (6) It also regulates the gene products linked with proliferation of tumors. (7) The transcription factor controls the expression of gene products linked with invasion, angiogenesis, and metastasis of cancer. (8) While most carcinogens activate NF-κB, most chemopreventive agents suppress its activation. These observations suggest that NF-κB is intimately intertwined with cancer growth and metastasis. The mechanism that leads to constitutive activation of NF-κB in hematological, gastrointestinal, genitourinary, gynecological, thoracic head and neck, breast, and skin cancers, and the ways NF-κB is activated are the topics of discussion in this review.


Biotechnology Advances | 2014

Curcumin, a component of golden spice: from bedside to bench and back.

Sahdeo Prasad; Subash C. Gupta; Amit K. Tyagi; Bharat B. Aggarwal

Although the history of the golden spice turmeric (Curcuma longa) goes back thousands of years, it is only within the past century that we learned about the chemistry of its active component, curcumin. More than 6000 articles published within the past two decades have discussed the molecular basis for the antioxidant, anti-inflammatory, antibacterial, antiviral, antifungal, and anticancer activities assigned to this nutraceutical. Over sixty five clinical trials conducted on this molecules, have shed light on the role of curcumin in various chronic conditions, including autoimmune, cardiovascular, neurological, and psychological diseases, as well as diabetes and cancer. The current review provides an overview of the history, chemistry, analogs, and mechanism of action of curcumin.


Toxins | 2010

Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer

Vivek R. Yadav; Sahdeo Prasad; Bokyung Sung; Ramaswamy Kannappan; Bharat B. Aggarwal

Traditional medicine and diet has served mankind through the ages for prevention and treatment of most chronic diseases. Mounting evidence suggests that chronic inflammation mediates most chronic diseases, including cancer. More than other transcription factors, nuclear factor-kappaB (NF-κB) and STAT3 have emerged as major regulators of inflammation, cellular transformation, and tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Thus, agents that can inhibit NF-κB and STAT3 activation pathways have the potential to both prevent and treat cancer. In this review, we examine the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis. These triterpenes include avicins, betulinic acid, boswellic acid, celastrol, diosgenin, madecassic acid, maslinic acid, momordin, saikosaponins, platycodon, pristimerin, ursolic acid, and withanolide. This review thus supports the famous adage of Hippocrates, “Let food be thy medicine and medicine be thy food”.


Planta Medica | 2010

Targeting Inflammatory Pathways by Flavonoids for Prevention and Treatment of Cancer

Sahdeo Prasad; Kannokarn Phromnoi; Vivek R. Yadav; Madan M. Chaturvedi; Bharat B. Aggarwal

Observational studies have suggested that lifestyle risk factors such as tobacco, alcohol, high-fat diet, radiation, and infections can cause cancer and that a diet consisting of fruits and vegetables can prevent cancer. Evidence from our laboratory and others suggests that agents either causing or preventing cancer are linked through the regulation of inflammatory pathways. Genes regulated by the transcription factor NF- kappaB have been shown to mediate inflammation, cellular transformation, tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Whereas various lifestyle risk factors have been found to activate NF- kappaB and NF- kappaB-regulated gene products, flavonoids derived from fruits and vegetables have been found to suppress this pathway. The present review describes various flavones, flavanones, flavonols, isoflavones, anthocyanins, and chalcones derived from fruits, vegetables, legumes, spices, and nuts that can suppress the proinflammatory cell signaling pathways and thus can prevent and even treat the cancer.


Molecular Nutrition & Food Research | 2013

Multitargeting by turmeric, the golden spice: From kitchen to clinic

Subash C. Gupta; Bokyung Sung; Ji Hye Kim; Sahdeo Prasad; Shiyou Li; Bharat B. Aggarwal

Although much has been published about curcumin, which is obtained from turmeric, comparatively little is known about turmeric itself. Turmeric, a golden spice obtained from the rhizome of the plant Curcuma longa, has been used to give color and taste to food preparations since ancient times. Traditionally, this spice has been used in Ayurveda and folk medicine for the treatment of such ailments as gynecological problems, gastric problems, hepatic disorders, infectious diseases, and blood disorders. Modern science has provided the scientific basis for the use of turmeric against such disorders. Various chemical constituents have been isolated from this spice, including polyphenols, sesquiterpenes, diterpenes, triterpenoids, sterols, and alkaloids. Curcumin, which constitutes 2-5% of turmeric, is perhaps the most-studied component. Although some of the activities of turmeric can be mimicked by curcumin, other activities are curcumin-independent. Cell-based studies have demonstrated the potential of turmeric as an antimicrobial, insecticidal, larvicidal, antimutagenic, radioprotector, and anticancer agent. Numerous animal studies have shown the potential of this spice against proinflammatory diseases, cancer, neurodegenerative diseases, depression, diabetes, obesity, and atherosclerosis. At the molecular level, this spice has been shown to modulate numerous cell-signaling pathways. In clinical trials, turmeric has shown efficacy against numerous human ailments including lupus nephritis, cancer, diabetes, irritable bowel syndrome, acne, and fibrosis. Thus, a spice originally common in the kitchen is now exhibiting activities in the clinic. In this review, we discuss the chemical constituents of turmeric, its biological activities, its molecular targets, and its potential in the clinic.


Biochemical Pharmacology | 2010

Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake

Vivek R. Yadav; Sahdeo Prasad; Ramaswamy Kannappan; Jayaraj Ravindran; Madan M. Chaturvedi; Lauri Vaahtera; Jaakko Parkkinen; Bharat B. Aggarwal

Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), has been linked with multiple beneficial activities, but its optimum potential is limited by poor bioavailability, in part due to the lack of solubility in aqueous solvents. To overcome the solubility problem, we have recently developed a novel cyclodextrin complex of curcumin (CDC) and examined here this compound for anti-inflammatory and antiproliferative effects. Using the electrophoretic mobility shift assay, we found that CDC was more active than free curcumin in inhibiting TNF-induced activation of the inflammatory transcription factor NF-kappaB and in suppressing gene products regulated by NF-kappaB, including those involved in cell proliferation (cyclin D1), invasion (MMP-9), and angiogenesis (VEGF). CDC was also more active than free curcumin in inducing the death receptors DR4 and DR5. Annexin V staining, cleavage of caspase-3 and PARP, and DNA fragmentation showed that CDC was more potent than free curcumin in inducing apoptosis of leukemic cells. Antiproliferative assays also demonstrated that CDC was more active than free curcumin in suppressing proliferation of various cancer cell lines. The cyclodextrin vehicle had no effect in these assays. Compared with free curcumin, CDC had a greater cellular uptake and longer half-life in the cells. Overall we demonstrated that CDC had superior attributes compared with free curcumin for cellular uptake and for antiproliferative and anti-inflammatory activities.


Trends in Pharmacological Sciences | 2013

Cancer drug discovery by repurposing: teaching new tricks to old dogs

Subash C. Gupta; Bokyung Sung; Sahdeo Prasad; Lauren J. Webb; Bharat B. Aggarwal

Progressively increasing failure rates, high cost, poor bioavailability, poor safety, limited efficacy, and a lengthy design and testing process associated with cancer drug development have necessitated alternative approaches to drug discovery. Exploring established non-cancer drugs for anticancer activity provides an opportunity rapidly to advance therapeutic strategies into clinical trials. The impetus for development of cancer therapeutics from non-cancer drugs stems from the fact that different diseases share common molecular pathways and targets in the cell. Common molecular origins of diverse diseases have been discovered through advancements in genomics, proteomics, and informatics technologies, as well as through the development of analytical tools that allow researchers simultaneously to screen large numbers of existing drugs against a particular disease target. Thus, drugs originally identified as antitussive, sedative, analgesic, antipyretic, antiarthritic, anesthetic, antidiabetic, muscle relaxant, immunosuppressant, antibiotic, antiepileptic, cardioprotective, antihypertensive, erectile function enhancing, or angina relieving are being repurposed for cancer. This review describes the repurposing of these drugs for cancer treatment.

Collaboration


Dive into the Sahdeo Prasad's collaboration.

Top Co-Authors

Avatar

Bharat B. Aggarwal

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vivek R. Yadav

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Bokyung Sung

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yogeshwer Shukla

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Ramaswamy Kannappan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Amit K. Tyagi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jayaraj Ravindran

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Simone Reuter

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Amit Kumar Tyagi

Indian Institute of Technology Delhi

View shared research outputs
Researchain Logo
Decentralizing Knowledge