Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sai Ching J. Yeung is active.

Publication


Featured researches published by Sai Ching J. Yeung.


Cell Cycle | 2011

Roles of COP9 signalosome in cancer

Mong Hong Lee; Ruiying Zhao; Liem Phan; Sai Ching J. Yeung

The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Aurora B kinase phosphorylates and instigates degradation of p53

Chris Gully; Guermarie Velazquez-Torres; Ji Hyun Shin; Enrique Fuentes-Mattei; Edward Wang; Colin Carlock; Jian Chen; Daniel Rothenberg; Henry P. Adams; Hyun Ho Choi; Sergei Guma; Liem Phan; Ping Chieh Chou; Chun Hui Su; Fanmao Zhang; Jiun Sheng Chen; Tsung Ying Yang; Sai Ching J. Yeung; Mong Hong Lee

Aurora B is a mitotic checkpoint kinase that plays a pivotal role in the cell cycle, ensuring correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in many types of human cancers, which has made it an attractive target for cancer therapies. Tumor suppressor p53 is a genome guardian and important negative regulator of the cell cycle. Whether Aurora B and p53 are coordinately regulated during the cell cycle is not known. We report that Aurora B directly interacts with p53 at different subcellular localizations and during different phases of the cell cycle (for instance, at the nucleus in interphase and the centromeres in prometaphase of mitosis). We show that Aurora B phosphorylates p53 at S183, T211, and S215 to accelerate the degradation of p53 through the polyubiquitination–proteasome pathway, thus functionally suppressing the expression of p53 target genes involved in cell cycle inhibition and apoptosis (e.g., p21 and PUMA). Pharmacologic inhibition of Aurora B in cancer cells with WT p53 increased p53 protein level and expression of p53 target genes to inhibit tumor growth. Together, these results define a mechanism of p53 inactivation during the cell cycle and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise the tumor suppressor function of p53. We have elucidated the antineoplastic mechanism for Aurora B kinase inhibitors in cancer cells with WT p53.


Oncogene | 2009

Pim-1 plays a pivotal role in hypoxia-induced chemoresistance

Jiun Sheng Chen; M. Kobayashi; Stephanie Darmanin; Yi Qiao; Christopher Gully; Ruiying Zhao; Sai Ching J. Yeung; Mong Hong Lee

Hypoxia changes the responses of cancer cells to many chemotherapy agents, resulting in chemoresistance. The underlying molecular mechanism of hypoxia-induced drug resistance remains unclear. Pim-1 is a survival kinase, which phosphorylates Bad at serine 112 to antagonize drug-induced apoptosis. Here we show that hypoxia increases Pim-1 in a hypoxia-inducible factor-1α-independent manner. Inhibition of Pim-1 function by dominant-negative Pim-1 dramatically restores the drug sensitivity to apoptosis induced by chemotherapy under hypoxic conditions in both in vitro and in vivo tumor models. Introduction of siRNAs for Pim-1 also resensitizes cancer cells to chemotherapy drugs under hypoxic conditions, whereas forced overexpression of Pim-1 endows solid tumor cells with resistance to cisplatin, even under normoxia. Dominant-negative Pim-1 prevents a decrease in mitochondrial transmembrane potential in solid tumor cells, which is normally induced by cisplatin (CDDP), followed by the reduced activity of Caspase-3 and Caspase-9, indicating that Pim-1 participates in hypoxia-induced drug resistance through the stabilization of mitochondrial transmembrane potential. Our results demonstrate that Pim-1 is a pivotal regulator involved in hypoxia-induced chemoresistance. Targeting Pim-1 may improve the chemotherapeutic strategy for solid tumors.


Journal of Clinical Investigation | 2011

Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers

Ruiying Zhao; Sai Ching J. Yeung; Jian Chen; Tomoo Iwakuma; Chun Hui Su; Bo Chen; Changju Qu; Fanmao Zhang; You-Tzung Chen; Yu Li Lin; Dung Fang Lee; Feng Jin; Rui Zhu; Tattym Shaikenov; Dos D. Sarbassov; Aysegul A. Sahin; Huamin Wang; Hua Wang; Chien-Chen Lai; Fuu Jen Tsai; Guillermina Lozano; Mong Hong Lee

The mammalian constitutive photomorphogenesis 9 (COP9) signalosome (CSN), a protein complex involved in embryonic development, is implicated in cell cycle regulation and the DNA damage response. Its role in tumor development, however, remains unclear. Here, we have shown that the COP9 subunit 6 (CSN6) gene is amplified in human breast cancer specimens, and the CSN6 protein is upregulated in human breast and thyroid tumors. CSN6 expression positively correlated with expression of murine double minute 2 (MDM2), a potent negative regulator of the p53 tumor suppressor. Expression of CSN6 appeared to prevent MDM2 autoubiquitination at lysine 364, resulting in stabilization of MDM2 and degradation of p53. Mice in which Csn6 was deleted died early in embryogenesis (E7.5). Embryos lacking both Csn6 and p53 survived to later in embryonic development (E10.5), which suggests that loss of p53 could partially rescue the effect of loss of Csn6. Mice heterozygous for Csn6 were sensitized to γ-irradiation-induced, p53-dependent apoptosis in both the thymus and the developing CNS. These mice were also less susceptible than wild-type mice to γ-irradiation-induced tumorigenesis. These results suggest that loss of CSN6 enhances p53-mediated tumor suppression in vivo and that CSN6 plays an important role in regulating DNA damage-associated apoptosis and tumorigenesis through control of the MDM2-p53 signaling pathway.


Cancer Research | 2011

14-3-3σ Exerts Tumor-Suppressor Activity Mediated by Regulation of COP1 Stability

Chun Hui Su; Ruiying Zhao; Fanmao Zhang; Changju Qu; Bo Chen; Yin Hsun Feng; Liem Phan; Jian Chen; Hua Wang; Huamin Wang; Sai Ching J. Yeung; Mong Hong Lee

Constitutive photomorphogenic 1 (COP1) is a p53-targeting E3 ubiquitin ligase that is downregulated by DNA damage through mechanisms that remain obscure. Here, we report that COP1 is not downregulated following DNA damage in 14-3-3σ null cells, implicating 14-3-3σ as a critical regulator in the response of COP1 to DNA damage. We also identified that 14-3-3σ, a p53 target gene product, interacted with COP1 and controlled COP1 protein stability after DNA damage. Mechanistic studies revealed that 14-3-3σ enhanced COP1 self-ubiquitination, thereby preventing COP1-mediated p53 ubiquitination, degradation, and transcriptional repression. In addition, we found that COP1 expression promoted cell proliferation, cell transformation, and tumor progression, manifesting its role in cancer promotion, whereas 14-3-3σ negatively regulated COP1 function and prevented tumor growth in a mouse xenograft model of human cancer. Immunohistochemical analysis of clinical breast and pancreatic cancer specimens demonstrated that COP1 protein levels were inversely correlated with 14-3-3σ protein levels. Together, our findings define a mechanism for posttranslational regulation of COP1 after DNA damage that can explain the correlation between COP1 overexpression and 14-3-3σ downregulation during tumorigenesis.


Oncogene | 2011

COP9 signalosome subunit 6 stabilizes COP1, which functions as an E3 ubiquitin ligase for 14-3-3σ.

Hyun Ho Choi; Christopher Gully; Chun-Hui Su; Guermarie Velazquez-Torres; Ping-Chieh Chou; Chieh Tseng; Ruiying Zhao; Liem Phan; T. Shaiken; Jiun Sheng Chen; Sai Ching J. Yeung; Mong Hong Lee

14-3-3σ, a gene upregulated by p53 in response to DNA damage, exists as part of a positive-feedback loop, which activates p53 and is a human cancer epithelial marker downregulated in various cancer types. 14-3-3σ levels are critical for maintaining p53 activity in response to DNA damage and regulating signal mediators such as Akt. In this study, we identify mammalian constitutive photomorphogenic 1 (COP1) as a novel E3 ubiquitin ligase for targeting 14-3-3σ through proteasomal degradation. We show for the first time that COP9 signalosome subunit 6 (CSN6) associates with COP1 and is involved in 14-3-3σ ubiquitin-mediated degradation. Mechanistic studies show that CSN6 expression leads to stabilization of COP1 through reducing COP1 self-ubiquitination and decelerating COP1s turnover rate. We also show that CSN6-mediated 14-3-3σ ubiquitination is compromised when COP1 is knocked down. Thus, CSN6 mediates 14-3-3σ ubiquitination through enhancing COP1 stability. Subsequently, we show that CSN6 causes 14-3-3σ downregulation, thereby activating Akt and promoting cell survival. Also, CSN6 overexpression leads to increased cell growth, transformation and promotes tumorigenicity. Significantly, 14-3-3σ expression can correct the abnormalities mediated by CSN6 expression. These data suggest that the CSN6-COP1 axis is involved in 14-3-3σ degradation, and that deregulation of this axis will promote cell growth and tumorigenicity.


Nature Communications | 2016

Obesity-associated NLRC4 inflammasome activation drives breast cancer progression

Ryan Kolb; Liem Phan; Nicholas Borcherding; Yinghong Liu; Fang Yuan; Ann M. Janowski; Qing Xie; Kathleen R. Markan; Wei Li; Matthew J. Potthoff; Enrique Fuentes-Mattei; Lesley G. Ellies; C. Michael Knudson; Mong Hong Lee; Sai Ching J. Yeung; Suzanne L. Cassel; Fayyaz S. Sutterwala; Weizhou Zhang

Obesity is associated with an increased risk of developing breast cancer and is also associated with worse clinical prognosis. The mechanistic link between obesity and breast cancer progression remains unclear, and there has been no development of specific treatments to improve the outcome of obese cancer patients. Here we show that obesity-associated NLRC4 inflammasome activation/ interleukin (IL)-1 signalling promotes breast cancer progression. The tumour microenvironment in the context of obesity induces an increase in tumour-infiltrating myeloid cells with an activated NLRC4 inflammasome that in turn activates IL-1β, which drives disease progression through adipocyte-mediated vascular endothelial growth factor A (VEGFA) expression and angiogenesis. Further studies show that treatment of mice with metformin inhibits obesity-associated tumour progression associated with a marked decrease in angiogenesis. This report provides a causal mechanism by which obesity promotes breast cancer progression and lays out a foundation to block NLRC4 inflammasome activation or IL-1β signalling transduction that may be useful for the treatment of obese cancer patients.


Cell Cycle | 2012

HER2-Akt signaling in regulating COP9 signalsome subunit 6 and p53

Yuwen Xue; Jian Chen; Hyun Ho Choi; Liem Phan; Ping Chieh Chou; Ruiying Zhao; Huiling Yang; Janice Santiago; Mo Liu; Giselle Yeung; Sai Ching J. Yeung; Mong Hong Lee

HER2/neu oncogene is frequently overexpressed in various types of cancer, and the (PI3K)-Akt signaling pathway is often activated in HER2-overexpressing cancer cells. CSN6, subunit 6 of the COP9 signalosome complex, is pivotal in regulating MDM2 to destabilize p53, but its upstream regulators remain unclear. Here we show that the HER2-Akt axis is linked to CSN6 regulation, and that Akt is a positive regulator of CSN6. Ectopic expression of Akt can increase the expression of CSN6; accordingly, Akt inhibition leads to CSN6 destabilization. Mechanistic studies show that Akt causes CSN6 phosphorylation at Ser 60, which, in turn, reduces ubiquitin-mediated protein degradation of CSN6. Significantly, Akt’s positive impact on CSN6 elevation translates into p53 degradation, potentiating transformational activity and increasing DNA damage. Akt inhibition can attenuate these defects caused by CSN6. These data suggest that Akt is an important positive regulator of CSN6, and that activation of Akt in many types of cancer could lead to abnormal elevation of CSN6 and result in downregulated p53 and increased DNA damage, which promotes cancer cell growth.


Oncotarget | 2015

COP9 signalosome subunit 6 (CSN6) regulates E6AP/UBE3A in cervical cancer

Shujun Gao; Lekun Fang; Liem Phan; Aiham Qdaisat; Sai Ching J. Yeung; Mong Hong Lee

Cervical cancer is one of the leading causes of cancer death in women. Human papillomaviruses (HPVs) are the major cause in almost 99.7% of cervical cancer. E6 oncoprotein of HPV and E6-associated protein (E6AP) are critical in causing p53 degradation and malignancy. Understanding the E6AP regulation is critical to develop treating strategy for cervical cancer patients. The COP9 signalosome subunit 6 (CSN6) is involved in ubiquitin-mediated protein degradation. We found that both CSN6 and E6AP are overexpressed in cervical cancer. We characterized that CSN6 associated with E6AP and stabilized E6AP expression by reducing E6AP poly-ubiquitination, thereby regulating p53 activity in cell proliferation and apoptosis. Mechanistic studies revealed that CSN6-E6AP axis can be regulated by EGF/Akt signaling. Furthermore, inhibition of CSN6-E6AP axis hinders cervical cancer growth in mice. Taken together, our results indicate that CSN6 is a positive regulator of E6AP and is important for cervical cancer development.


Case reports in oncological medicine | 2015

Maintenance Therapy Containing Metformin and/or Zyflamend for Advanced Prostate Cancer: A Case Series.

Mehmet Asim Bilen; Sue Hwa Lin; Dean G. Tang; Kinjal Parikh; Mong Hong Lee; Sai Ching J. Yeung; Shi Ming Tu

Metformin is derived from galegine, a natural ingredient, and recent studies have suggested that metformin could enhance the antitumor effects of hormone ablative therapy or chemotherapy and reduce prostate cancer-specific mortality. Zyflamend is a combination of herbal extracts that reduces inflammation and comprises turmeric, holy basil, green tea, oregano, ginger, rosemary, Chinese goldthread, hu zhang, barberry, and basil skullcap. We propose a maintenance regimen with metformin and/or Zyflamend that targets cancer stem cells and the tumor microenvironment to keep the cancer dormant and prevent it from activation from dormancy. Herein, we report the clinical course of four patients who experienced a clinical response after treatment with metformin and/or Zyflamend.

Collaboration


Dive into the Sai Ching J. Yeung's collaboration.

Top Co-Authors

Avatar

Mong Hong Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Liem Phan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ruiying Zhao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chun Hui Su

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hyun Ho Choi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Fanmao Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jian Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jiun Sheng Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ping Chieh Chou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Changju Qu

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge