Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sai H.S. Boddu is active.

Publication


Featured researches published by Sai H.S. Boddu.


International Journal of Pharmaceutics | 2013

Approaches for Enhancing Oral Bioavailability of Peptides and Proteins

Jwala Renukuntla; Aswani Dutt Vadlapudi; Ashaben Patel; Sai H.S. Boddu; Ashim K. Mitra

Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1-2%). An ideal oral drug delivery system should be capable of (a) maintaining the integrity of protein molecules until it reaches the site of absorption, (b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and (c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules.


Frontiers in Behavioral Neuroscience | 2014

Effects of MS-153 on chronic ethanol consumption and GLT1 modulation of glutamate levels in male alcohol-preferring rats.

Hasan Alhaddad; Nathaniel T. Kim; Munaf Aal-Aaboda; Yusuf S. Althobaiti; James L. Leighton; Sai H.S. Boddu; Yangjie Wei; Youssef Sari

We have recently shown that upregulation of glutamate transporter 1 (GLT1) in the brain is associated in part with reduction in ethanol intake in alcohol-preferring (P) male rats. In this study, we investigated the effects of a synthetic compound, (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), known to activate GLT1 on ethanol consumption as well as GLT1 expression and certain signaling pathways in P rats. P rats were given 24-h concurrent access to 15 and 30% ethanol, water and food for 5 weeks. On week 6, P rats received MS-153 at a dose of 50 mg/kg (i.p.) or a vehicle (i.p.) for 5 consecutive days. We also tested the effect of MS-153 on daily sucrose (10%) intake. Our studies revealed a significant decrease in ethanol intake at the dose of 50 mg/kg MS-153 from Day 1 through 14. In addition, MS-153 at dose of 50 mg/kg did not induce any significant effect on sucrose intake. Importantly, we found that MS-153 upregulated the GLT1 level in the nucleus accumbens (NAc) but not in the prefrontal cortex (PFC). In accordance, we found upregulation of nuclear NFkB-65 level in NAc in MS-153-treated group, however, IkBα was downregulated in MS-153-treated group in NAc. We did not find any changes in NFkB-65 and IkBα levels in PFC. Interestingly, we revealed that p-Akt was downregulated in ethanol vehicle treated groups in the NAc; this downregulation was reversed by MS-153 treatment. We did not observe any significant differences in glutamate aspartate transporter (GLAST) expression among all groups. These findings reveal MS-153 as a GLT1 modulator that may have potential as a therapeutic drug for the treatment of alcohol dependence.


Journal of Ocular Pharmacology and Therapeutics | 2010

Novel nanoparticulate gel formulations of steroids for the treatment of macular edema.

Sai H.S. Boddu; Jwala Jwala; Ravi Vaishya; Ravinder Earla; Pradeep K. Karla; Dhananjay Pal; Ashim K. Mitra

PURPOSE This article describes the development and characterization of PLGA nanoparticles of dexamethasone (DEX), hydrocortisone acetate (HA), and prednisolone acetate (PA) suspended in thermosensitive gels indicated for the treatment of macular edema (ME). METHODS Nanoparticles were prepared by oil-in-water (O/W) emulsion and dialysis methods using PLGA 50:50 and PLGA 65:35. These particles were characterized for entrapment efficiency, size distribution, surface morphology, crystallinity, and in vitro release. Further, ex vivo permeation studies of DEX in suspension and nanoparticulate formulations were carried out across the rabbit sclera. RESULTS Entrapment efficiencies of DEX, HA, and PA were found to be lower with the dialysis method. O/W emulsion/solvent evaporation technique resulted in higher entrapment efficiencies, that is, 77.3%, 91.3%, 92.3% for DEX, HA, and PA, respectively. Release from nanoparticles suspended in thermosensitive gels followed zero-order kinetics with no apparent burst effect. Ex vivo permeability studies further confirmed sustained release of DEX from nanoparticles suspended in thermosensitive gels. CONCLUSIONS These novel nanoparticulate systems containing particles suspended in thermosensitive gels may provide sustained retina/choroid delivery of steroids following episcleral administration.


Journal of Ocular Pharmacology and Therapeutics | 2009

Vitreal Pharmacokinetics of Biotinylated Ganciclovir: Role of Sodium-Dependent Multivitamin Transporter Expressed on Retina

Kumar G. Janoria; Sai H.S. Boddu; Zhiying Wang; Durga Paturi; Swapan K. Samanta; Dhananjay Pal; Ashim K. Mitra

PURPOSE The objective of this study was to investigate the role of sodium-dependent multiple vitamin transporter (SMVT) on Biotin-Ganciclovir (biotin-GCV) uptake on both human retinal pigmented epithelium cell line (ARPE-19) and rabbit retina. Study also aims to delineate the vitreal pharmacokinetics of biotin-GCV. METHOD ARPE-19 was employed to study the in vitro uptake experiments. New Zealand white albino rabbits were used to study in vivo retinal uptake and vitreal pharmacokinetics following intravitreal administration of biotin-GCV. In vitro uptake kinetics of [3H] biotin was determined at various initial concentrations. Competitive inhibition studies were conducted in the presence of unlabelled biotin, desthiobiotin, pantothenic acid, and lipoic acid. Various other uptake studies were performed to functionally characterize the transporter. To provide the molecular evidence of this transporter, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) studies were also conducted. In vivo retinal/choroidal uptake studies were carried out with New Zealand albino rabbits. Unconscious animal ocular microdialysis studies were performed in order to evaluate intravitreal pharmacokinetics of GCV and Biotin-GCV. RESULTS Uptake of [3H] biotin into ARPE-19 was linear over 7 min, and found to be saturable with K(m) of 138.25 muM and Vmax of 38.85 pmol/min/mg protein. Both pantothenic acid and lipoic acid decreased significantly in uptake of biotin in the concentration-dependent manner. Uptake of biotin into ARPE-19 was found to be temperature, energy, and Na+ dependent but Cl(-)independent. Further, RT-PCR studies identified a band exhibiting presence of hSMVT on ARPE-19. Biotin-GCV is recognized by SMVT system present on the ARPE-19 and rabbit retina. Vitreal Pharmacokinetics profile reveals that most of the parameters were not significantly different for GCV and Biotin-GCV. However, use of Biotin-GCV may result in sustain levels of regenerated GCV in vitreous. CONCLUSIONS SMVT was identified and functionally characterized on ARPE-19 cells. Further, Biotin-GCV shares this transport system. Vitreal pharmacokinetics of the conjugate was determined in unconscious rabbit model.


Journal of Ocular Pharmacology and Therapeutics | 2011

Ocular Sustained Release Nanoparticles Containing Stereoisomeric Dipeptide Prodrugs of Acyclovir

Jwala Jwala; Sai H.S. Boddu; Sujay Shah; Suman Sirimulla; Dhananjay Pal; Ashim K. Mitra

PURPOSE The objective of this study was to develop and characterize polymeric nanoparticles of appropriate stereoisomeric dipeptide prodrugs of acyclovir (L-valine-L-valine-ACV, L-valine-D-valine-ACV, D-valine-L-valine-ACV, and D-valine-D-valine-ACV) for the treatment of ocular herpes keratitis. METHODS Stereoisomeric dipeptide prodrugs of acyclovir (ACV) were screened for bioreversion in various ocular tissues, cell proliferation, and uptake across the rabbit primary corneal epithelial cell line. Docking studies were carried out to examine the affinity of prodrugs to the peptide transporter protein. Prodrugs with optimum characteristics were selected for the preparation of nanoparticles using various grades of poly (lactic-co-glycolic acid) (PLGA). Nanoparticles were characterized for the entrapment efficiency, surface morphology, size distribution, and in vitro release. Further, the effect of thermosensitive gels on the release of prodrugs from nanoparticles was also studied. RESULTS L-valine-L-valine-ACV and L-valine-D-valine-ACV were considered to be optimum in terms of enzymatic stability, uptake, and cytotoxicity. Docking results indicated that L-valine in the terminal position increases the affinity of the prodrugs to the peptide transporter protein. Entrapment efficiency values of L-valine-L-valine-ACV and L-valine-D-valine-ACV were found to be optimal with PLGA 75:25 and PLGA 65:35 polymers, respectively. In vitro release of prodrugs from nanoparticles exhibited a biphasic release behavior with initial burst phase followed by sustained release. Dispersion of nanoparticles in thermosensitive gels completely eliminated the burst release phase. CONCLUSION Novel nanoparticulate systems of dipeptide prodrugs of ACV suspended in thermosensitive gels may provide sustained delivery after topical administration.


Journal of Ocular Pharmacology and Therapeutics | 2010

In vitro evaluation of a targeted and sustained release system for retinoblastoma cells using Doxorubicin as a model drug.

Sai H.S. Boddu; Jwala Jwala; Monica R. Chowdhury; Ashim K. Mitra

PURPOSE The objective of this study was to develop a novel folate receptor-targeted drug delivery system for retinoblastoma cells using doxorubicin (DOX) as a model drug. METHODS Biodegradable DOX-loaded poly(d,l-lactide-co-glycolide)-poly(ethylene glycol)-folate (PLGA-PEG-FOL) micelles (DOXM) were prepared with various solvents (dimethylsulfoxide, acetone, and dimethylformamide). The effects of solvents on entrapment efficiency, particle size, and polydispersity were examined. The effects of thermosensitive gel structure on the release of DOX from the DOXM were also studied. Qualitative and quantitative uptake studies of DOX and DOXM were carried out in Y-79 cell line. Cytotoxicity studies of DOXM were performed on Y-79 cells. RESULTS Based on size, polydispersity, and entrapment efficiency, dimethylformamide was found to be the most suitable solvent for the preparation of DOXM. Dispersion of DOXM in PLGA-PEG-PLGA gel sustained drug release for a period of 2 weeks. Uptake of DOX was ∼4 times higher with DOXM than DOX in Y-79 cells overexpressing folate receptors. This was further confirmed from the quantitative uptake studies. DOXM exhibited higher cytotoxicity in Y-79 cells when compared with pure DOX. CONCLUSION These polymeric micellar systems suspended in thermosensitive gels may provide sustained and targeted delivery of anticancer agents to retinoblastoma cells following intravitreal administration.


Neuroscience | 2015

Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats

P.S.S. Rao; Sunil Goodwani; Richard L. Bell; Yangjie Wei; Sai H.S. Boddu; Youssef Sari

Chronic ethanol consumption is known to downregulate expression of the major glutamate transporter 1 (GLT-1), which increases extracellular glutamate concentrations in subregions of the mesocorticolimbic reward pathway. While β-lactam antibiotics were initially identified as potent upregulators of GLT-1 expression, only ceftriaxone has been extensively studied in various drug addiction models. Therefore, in this study, adult male alcohol-preferring (P) rats exposed chronically to ethanol were treated with other β-lactam antibiotics, ampicillin, cefazolin or cefoperazone (100mg/kg) once daily for five consecutive days to assess their effects on ethanol consumption. The results demonstrated that each compound significantly reduced ethanol intake compared to the saline-treated control group. Importantly, each compound significantly upregulated both GLT-1 and pAKT expressions in the nucleus accumbens and prefrontal cortex compared to saline-treated control group. In addition, only cefoperazone significantly inhibited hepatic aldehyde dehydrogenase-2 enzyme activity. Moreover, these β-lactams exerted only a transient effect on sucrose drinking, suggesting specificity for chronically inhibiting ethanol reward in adult male P rats. Cerebrospinal fluid concentrations of ampicillin, cefazolin or cefoperazone have been confirmed using high-performance liquid chromatography. These findings demonstrate that multiple β-lactam antibiotics demonstrate efficacy in reducing alcohol consumption and appear to be potential therapeutic compounds for treating alcohol abuse and/or dependence. In addition, these results suggest that pAKT may be an important player in this effect, possibly through increased transcription of GLT-1.


Recent Patents on Drug Delivery & Formulation | 2014

Drug delivery to the back of the eye following topical administration: an update on research and patenting activity.

Sai H.S. Boddu; Himanshu Gupta; Soohi Patel

Drug delivery to the back of the eye following topical administration remains an unmet need for the scientific community. Treatment of posterior segment diseases requires localized and long-term drug delivery to the retina, choroid, and Bruchs membrane. Until the last decade, there was limited evidence from large clinical trials that demonstrated the usefulness of pharmacotherapy compared to laser therapy or other vitreoretinal surgical techniques for the treatment of retinal diseases. This paradigm has shifted in recent years, with strong evidence demonstrating superior efficacy of ophthalmic drugs compared to previous gold standards. However, ophthalmologists are left with no options other than administering the therapeutics via implants and intravitreal injections, which are highly invasive and associated with patient non-compliance. A non-invasive topical therapy would enhance patient compliance and minimize the side-effects associated with intraocular implants and intravitreal injections. In an attempt to enhance patient compliance, the focus of research has shifted to the development of novel small molecule-based eye drop formulations. This review article discusses the relevant patents and summarizes the resurgence in the treatment of posterior segment eye diseases through topical drug administration.


Bioanalysis | 2010

Ocular microdialysis: a continuous sampling technique to study pharmacokinetics and pharmacodynamics in the eye

Sai H.S. Boddu; Sriram Gunda; Ravinder Earla; Ashim K. Mitra

The unique anatomy and physiology of the eye present many challenges to the successful development and delivery of ophthalmic drugs. Any therapeutic strategy developed to control the progression of anterior and posterior segment diseases requires continuous monitoring of effective drug concentrations in the relevant ocular tissues and fluids. Ocular microdialysis has gained popularity in recent years due to its ability to continuously monitor drug concentrations and substantially reduce the number of animals needed. The intrusive nature of ocular microdialysis experimentation has restricted these studies to animal models. This review article intends to highlight various aspects of ocular microdialysis and its relevance in examining the disposition of drugs in the anterior and posterior segments.


Pharmaceutics | 2017

Folate Decorated Nanomicelles Loaded with a Potent Curcumin Analogue for Targeting Retinoblastoma

Hashem O. Alsaab; Rami M. Alzhrani; Prashant Kesharwani; Samaresh Sau; Sai H.S. Boddu; Arun K. Iyer

The aim of this study was to develop a novel folate receptor-targeted drug delivery system for retinoblastoma cells using a promising anticancer agent, curcumin-difluorinated (CDF), loaded in polymeric micelles. Folic acid was used as a targeting moiety to enhance the targeting and bioavailability of CDF. For this purpose, amphiphilic poly(styrene-co-maleic acid)-conjugated-folic acid (SMA-FA) was synthesized and utilized to improve the aqueous solubility of a highly hydrophobic, but very potent anticancer compound, CDF, and its targeted delivery to folate overexpressing cancers. The SMA-FA conjugate was first synthesized and characterized by 1H NMR, FTIR and DSC. Furthermore, the chromatographic condition (HPLC) for estimating CDF was determined and validated. The formulation was optimized to achieve maximum entrapment of CDF. The particle size of the micelles was measured and confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cytotoxicity studies were conducted on (Y-79 and WERI-RB) retinoblastoma cells. Results showed that the solubility of CDF could be increased with the newly-synthesized polymer, and the entrapment efficiency was >85%. The drug-loaded nanomicelles exhibited an appropriate size of <200 nm and a narrow size distribution. The formulation did not show any adverse cytotoxicity on a human retinal pigment epithelial cell (ARPE-19), indicating its safety. However, it showed significant cell killing activity in both Y-79 and WERI-RB retinoblastoma cell lines, indicating its potency in killing cancer cells. In conclusion, the folic acid-conjugated SMA loaded with CDF showed promising potential with high safety and pronounced anticancer activity on the tested retinoblastoma cell lines. The newly-formulated targeted nanomicelles thus could be a viable option as an alternative approach to current retinoblastoma therapies.

Collaboration


Dive into the Sai H.S. Boddu's collaboration.

Top Co-Authors

Avatar

Ashim K. Mitra

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jwala Renukuntla

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dhananjay Pal

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge