Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sai Kiran Sharma is active.

Publication


Featured researches published by Sai Kiran Sharma.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis and evaluation of 1,5-diaryl-substituted tetrazoles as novel selective cyclooxygenase-2 (COX-2) inhibitors

Baker Jawabrah Al-Hourani; Sai Kiran Sharma; Jonathan Y. Mane; Jack A. Tuszynski; Vickie E. Baracos; Torsten Kniess; Mavanur R. Suresh; Jens Pietzsch; Frank Wuest

A series of 1,5-diaryl-substituted tetrazole derivatives was synthesized via conversion of readily available diaryl amides into corresponding imidoylchlorides followed by reaction with sodium azide. All compounds were evaluated by cyclooxygenase (COX) assays in vitro to determine COX-1 and COX-2 inhibitory potency and selectivity. Tetrazoles 3a-e showed IC(50) values ranging from 0.42 to 8.1 mM for COX-1 and 2.0 to 200 μM for COX-2. Most potent compound 3c (IC(50) (COX-2)=2.0 μM) was further used in molecular modeling docking studies.


Bioorganic & Medicinal Chemistry Letters | 2012

Novel 5-substituted 1H-tetrazoles as cyclooxygenase-2 (COX-2) inhibitors.

Baker Jawabrah Al-Hourani; Sai Kiran Sharma; Mavanur R. Suresh; Frank Wuest

A series of novel 5-substituted 1H-tetrazoles as cyclooxygenase-2 (COX-2) inhibitors was prepared via treatment of various diaryl amides with tetrachlorosilane/sodium azide. All compounds were tested in cyclooxygenase (COX) assays in vitro to determine COX-1 and COX-2 inhibitory potency and selectivity. Tetrazoles contained a methylsulfonyl or sulfonamide group as COX-2 pharmacophore displayed only low inhibitory potency towards COX-2. Most potent compounds showed IC(50) values of 6 and 7 μM for COX-2. All compounds showed IC(50) values greater 100 μM for COX-1 inhibition.


RSC Advances | 2014

2,3-Diaryl-substituted indole based COX-2 inhibitors as leads for imaging tracer development

Markus Laube; Christoph Tondera; Sai Kiran Sharma; Nicole Bechmann; Franz-Jacob Pietzsch; Arne Pigorsch; Martin Köckerling; Frank Wuest; Jens Pietzsch; Torsten Kniess

A series of 2,3-diaryl-substituted indoles containing a fluorine or methoxy group was synthesized via Fischer indole synthesis, McMurry cyclization, or Bischler–Mohlau reaction to identify potential leads for positron emission tomography (PET) radiotracer development as well as for optical imaging. All 2,3-diaryl-substituted indoles possess autofluorescent properties with an emission maximum in a range of 443–492 nm, which is acceptable for biological studies in vitro and, in part, in vivo. The molecular structure of compounds 3a and 3j was confirmed by X-ray crystal structure analysis. COX inhibitory activity was evaluated by a fluorescence-based and enzyme immunoassay-based assay. Redox activity of all target compounds was also determined. All synthesized 2,3-diaryl-substituted indoles are inhibitors of COX-2 enzyme in the low micromolar range. Compounds 3e, 3f, 3g and 3m displayed a 30–40% inhibition of COX-2 at 0.1 μM concentration while compounds 3f and 3g also exhibited COX-1 inhibitory activity. Various compounds like 3g showed substantial antioxidative potential (RDIENE = 2.85, RHAVA = 1.98), an effect that was most measurable with methoxy-substituted compounds. With respect to PET radiotracer synthesis, OMe-containing compound 3j was selected as a promising candidate for carbon-11 labeling, and F-containing compound 3m as a lead for the development of a fluorine-18 labeled derivative.


Bioorganic & Medicinal Chemistry Letters | 2013

Hybrid fluorescent conjugates of COX-2 inhibitors: Search for a COX-2 isozyme imaging cancer biomarker

Atul Bhardwaj; Jatinder Kaur; Sai Kiran Sharma; Zhangjian Huang; Frank Wuest; Edward E. Knaus

The observation that the cyclooxygenase-2 (COX-2) isozyme is over-expressed in multiple types of cancer, relative to that in adjacent non-cancerous tissue, prompted this investigation to prepare a group of hybrid fluorescent conjugates wherein the COX inhibitors ibuprofen, (S)-naproxen, acetyl salicylic acid, a chlororofecoxib analog and celecoxib were coupled via a linker group to an acridone, dansyl or rhodamine B fluorophore. Within this group of compounds, the ibuprofen-acridone conjugate (10) showed potent and selective COX-2 inhibition (COX-2 IC(50)=0.67 μM; SI=110.6), but its fluorescence emission (λ(em)=417, 440 nm) was not suitable for fluorescent imaging of cancer cells that over-express the COX-2 isozyme. In comparison, the celecoxib-dansyl conjugate (25) showed a slightly lower COX-2 potency and selectivity (COX-2 IC(50)=1.1 μM; SI>90) than the conjugate 10, and it possesses a better fluorescence emission (λ(em)=500 nm). Ultimately, a celecoxib-rhodamine B conjugate (28) that exhibited moderate COX-2 potency and selectivity (COX-2 IC(50)=3.9 μM; SI>25) having the best fluorescence emission (λ(em)=580 nm) emerged as the most promising biomarker for fluorescence imaging using a colon cancer cell line that over-expresses the COX-2 isozyme.


Organic and Biomolecular Chemistry | 2013

Synthesis of three 18F-labelled cyclooxygenase-2 (COX-2) inhibitors based on a pyrimidine scaffold

Ole Tietz; Sai Kiran Sharma; Jatinder Kaur; Jenilee Way; Alison Marshall; Melinda Wuest; Frank Wuest

Cyclooxygenase (COX) is the key enzyme within the complex conversion of arachidonic acid into prostaglandins (PGs). Inhibitors of this enzyme represent a particularly promising class of compounds for chemoprevention and cancer therapy. The experimental data on the involvement of COX isoform COX-2 in tumour development and progression, as well as the observed overexpression of COX-2 in a variety of human cancers provide the rationale for targeting COX-2 for molecular imaging and therapy of cancer. A series of trifluoromethyl-substituted pyrimidines was prepared as a novel class of selective COX-2 inhibitors, based on the lead structure 1a. All compounds were tested in cyclooxygenase (COX) assays in vitro to determine COX-1 and COX-2 inhibitory potency and selectivity. Molecular docking studies using the catalytic site of COX-1 and COX-2, respectively, provided complementary theoretical support for the obtained experimental biological structure–activity relationship data of three highly potent and selective fluorobenzyl-containing COX-2 inhibitors. Selected fluorobenzyl-substituted pyrimidine derivatives were further developed as (18)F-labelled radiotracers ([(18)F]1a, [(18)F]2a, [(18)F]3a). Radiotracers [(18)F]1a and [(18)F]2a were radiolabelled using 4-[(18)F]fluorobenzylamine ([(18)F]FBA) as a building block. Radiotracer [(18)F]3a was radiofluorinated directly using a nucleophilic aromatic substitution reaction with no-carrier-added (n.c.a.) [(18)F]fluoride on an iodylaryl compound as a labelling precursor.


Bioorganic & Medicinal Chemistry | 2012

Synthesis and evaluation of fluorobenzoylated di- and tripeptides as inhibitors of cyclooxygenase-2 (COX-2).

Sai Kiran Sharma; Baker Jawabrah Al-Hourani; Melinda Wuest; Jonathan Y. Mane; Jack A. Tuszynski; Vickie E. Baracos; Mavanur R. Suresh; Frank Wuest

A series of fluorobenzoylated di- and tripeptides as potential leads for the development of molecular probes for imaging of COX-2 expression was prepared according to standard Fmoc-based solid-phase peptide synthesis. All peptides were assessed for their COX-2 inhibitory potency and selectivity profile in a fluorescence-based COX binding assay. Within the series of 15 peptides tested, cysteine-containing peptides numbered 7, 8, 11 and 12, respectively, were the most potent COX-2 inhibitors possessing IC(50) values ranging from 5 to 85 μM. Fluorobenzoylated tripeptides 7 and 8 displayed some COX-2 selectivity (COX-2 selectivity index 2.1 and 1.6), whereas fluorobenzoylated dipeptides 11 and 12 were shown not to be COX-2 selective. Fluorbenzoylated tripeptide FB-Phe-Cys-Ser-OH was further used in molecular modeling docking studies to determine the binding mode within the active site of the COX-2 enzyme.


Journal of Organic Chemistry | 2015

Diaryl-Substituted (Dihydro)pyrrolo[3,2,1-hi]indoles, a Class of Potent COX-2 Inhibitors with Tricyclic Core Structure

Markus Laube; Cemena Gassner; Sai Kiran Sharma; Robert Günther; Arne Pigorsch; Jonas König; Martin Köckerling; Frank Wuest; Jens Pietzsch; Torsten Kniess

A new compound class of diaryl-substituted heterocycles with tricyclic dihydropyrrolo[3,2,1-hi]indole and pyrrolo[3,2,1-hi]indole core structures has been designed and was synthesized by a modular sequence of Friedel-Crafts acylation, amide formation, and McMurry cyclization. This synthesis route represents a novel and versatile access toward dihydropyrrolo[3,2,1-hi]indoles and is characterized by good chemical yields and high modularity. From a set of 19 derivatives, 11 candidates were selected for determination of their COX inhibition potency and were found to be selective inhibitors with high affinity to COX-2 (IC50 ranging from 20-2500 nM and negligible inhibition of COX-1). The binding mode of the novel inhibitors in the active side of COX-2 was calculated in silico using the protein-ligand docking program GOLD by application of the molecular structures of two compounds derived from X-ray crystallography. Two novel compounds with high affinity to COX-2 (6k = 70 nM, 8e = 60 nM) have a fluoro substituent, making them promising candidates for the development of (18)F-radiolabeled COX-2 inhibitors for imaging purposes with positron emission tomography (PET).


Protein Expression and Purification | 2014

Improved soluble expression of a single-chain antibody fragment in E. coli for targeting CA125 in epithelial ovarian cancer.

Sai Kiran Sharma; Mavanur R. Suresh; Frank Wuest

Production of antibody fragments in heterologous hosts such as Escherichiacoli provides a unique and cost-effective method to develop engineered vectors for tumor targeting. A single-chain Fragment variable (scFv) of the murine monoclonal antibody MAb-B43.13 targeting CA125 in epithelial ovarian cancer was previously developed, expressed, purified and proposed as a functional targeting entity for biomedical applications. However, the yields from its soluble expression in heterologous systems were very low for any practical use in preclinical translational research; leave alone the defeated objective of convenient and cost-effective production. In the present work, the anti-CA125 scFv gene was re-organized and sub-cloned into pET-22b(+) vector to be in frame with the pelB leader peptide for periplasmic localization and C-terminal hexa-histidine tag to facilitate downstream purification. Six variants of the scFv were constructed to investigate the impact of variable domain orientations, inter-domain peptide linker sequences and codon optimization on the soluble expression of the scFv using Rosetta 2(DE3) as the E. coli host supplemented with tRNAs for rare codons. Expression in shake flask cultures under the control of an inducible T7 promoter and subsequent purification by cobalt based immobilized metal affinity chromatography yielded differential amounts of high purity scFv for all constructs. Here, we report up to 14-fold increase in the soluble expression of the scFv primarily as a result of codon optimization with minor effects from inter-domain peptide linkers and variable domain orientation in the anti-CA125 scFv molecule. All the scFv constructs expressed and purified were found to be immunoreactive for in vitro targeting of CA125 antigen.


Breast Cancer Research | 2015

Targeting lysyl oxidase for molecular imaging in breast cancer

Melinda Wuest; Manuela Kuchar; Sai Kiran Sharma; Susan Richter; Ingrit Hamann; Monica Wang; Larissa Vos; John R. Mackey; Frank Wuest; Reik Löser

IntroductionLysyl oxidase (LOX; ExPASy ENZYME entry: EC 1.4.3.13) and members of the LOX-like family, LOXL1–LOXL4, are copper-dependent enzymes that can modify proteins of the extracellular matrix. Expression of LOX is elevated in many human cancers, including breast cancer. LOX expression correlates with the level of tissue hypoxia, and it is known to play a critical role in breast cancer metastasis. The goal of the present study was to target LOX with (1) molecular probe fluorescent labeling to visualize LOX in vitro and (2) a radiolabeled peptide to target LOX in vivo in three different preclinical models of breast cancer.MethodsGene expression of all five members of the LOX family was analyzed at the transcript level via microarray analysis using tissue biopsy samples from 176 patients with breast cancer. An oligopeptide sequence (GGGDPKGGGGG) was selected as a substrate-based, LOX-targeting structure. The peptide was labeled with fluorescein isothiocyanate (FITC) for confocal microscopy experiments with the murine breast cancer cell line EMT-6. In vivo molecular imaging experiments were performed using a C-terminal amidated peptide, GGGDPKGGGGG, labeled with a short-lived positron emitter, fluorine-18 (18F), for positron emission tomography (PET) in three different breast cancer models: EMT6, MCF-7 and MDA-MB-231. The PET experiments were carried out in the presence or absence of β-aminopropionitrile (BAPN), an irreversible inhibitor of LOX.ResultsImmunostaining experiments using a LOX-specific antibody on EMT-6 cells cultured under hypoxic conditions confirmed the elevation of LOX expression in these cells. An FITC-labeled oligopeptide, FITC-Ava-GGGDPKGGGGG-NH2, was found to be localized in different cellular compartments under these conditions. After injection of [18F]fluorobenzoate-GGGDPKGGGGG-NH2, radioactivity uptake was visible in all three breast cancer models in vivo. Tumor uptake was reduced by predosing the animals with 2 mg of BAPN 4 h or 24 h before injection of the radiotracer.ConclusionsThe present data support further investigation into the development of LOX-binding radiolabeled peptides as molecular probes for molecular imaging of LOX expression in cancer.


Bioorganic & Medicinal Chemistry | 2013

1,4-Diaryl-substituted triazoles as cyclooxygenase-2 inhibitors: Synthesis, biological evaluation and molecular modeling studies

Jatinder Kaur; Atul Bhardwaj; Sai Kiran Sharma; Frank Wuest

A novel group of 1,4-diaryl-substituted triazoles was designed and synthesized by introducing the cyclooxygenase-2 (COX-2) pharmacophore SO2NH2 attached to one aryl ring and various substituents (H, F, Cl, CH3 or OCH3) attached to the other aryl ring. The effects of size and flexibility of the compounds upon COX-1/COX-2 inhibitory potency and selectivity was studied by increasing the size of an alkyl linker chain [(-CH2)n, where n=0, 1, 2]. In vitro COX-1/COX-2 inhibition studies showed that all compounds (14-18, 21-25 and 28-32) are more potent inhibitors of COX-2 isozyme (IC50=0.17-28.0μM range) compared to COX-1 isozyme (IC50=21.0 to >100μM range). Within the group of 1,4 diaryl-substituted triazoles, 4-{2-[4-(4-chloro-phenyl)-[1,2,3]triazol-1-yl]-ethyl}-benzenesulfonamide (compound 30) displayed highest COX-2 inhibitory potency and selectivity (COX-1: IC50=>100μM, COX-2: IC50=0.17μM, SI >588). Molecular docking studies using the catalytic site of COX-1 and COX-2, respectively, provided complementary theoretical support for the obtained experimental biological structure-activity relationship data. Results of molecular docking studies revealed that COX-2 pharmacophore SO2NH2 in compound 30 is positioned in the secondary pocket of COX-2 active site; with the nitrogen atom of the SO2NH2 group being hydrogen bonded to Q192 (N⋯OC=2.85Å), and one of the oxygen atoms of SO2NH2 group forming a hydrogen bond to H90 (SO⋯N=2.38Å).

Collaboration


Dive into the Sai Kiran Sharma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Pietzsch

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Torsten Kniess

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason S. Lewis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge