Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saïd Azza is active.

Publication


Featured researches published by Saïd Azza.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms

Mickaël Boyer; Natalya Yutin; Isabelle Pagnier; Lina Barrassi; Ghislain Fournous; Leon Espinosa; Catherine Robert; Saïd Azza; Siyang Sun; Michael G. Rossmann; Marie Suzan-Monti; Bernard La Scola; Eugene V. Koonin; Didier Raoult

Giant viruses such as Mimivirus isolated from amoeba found in aquatic habitats show biological sophistication comparable to that of simple cellular life forms and seem to evolve by similar mechanisms, including extensive gene duplication and horizontal gene transfer (HGT), possibly in part through a viral parasite, the virophage. We report here the isolation of “Marseille” virus, a previously uncharacterized giant virus of amoeba. The virions of Marseillevirus encompass a 368-kb genome, a minimum of 49 proteins, and some messenger RNAs. Phylogenetic analysis of core genes indicates that Marseillevirus is the prototype of a family of nucleocytoplasmic large DNA viruses (NCLDV) of eukaryotes. The genome repertoire of the virus is composed of typical NCLDV core genes and genes apparently obtained from eukaryotic hosts and their parasites or symbionts, both bacterial and viral. We propose that amoebae are “melting pots” of microbial evolution where diverse forms emerge, including giant viruses with complex gene repertoires of various origins.


Journal of Biological Chemistry | 2000

A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli.

Sandrine Boschi-Muller; Saïd Azza; Sarah Sanglier-Cianférani; François Talfournier; Alain Van Dorsselear; Guy Branlant

Methionine oxidation into methionine sulfoxide is known to be involved in many pathologies and to exert regulatory effects on proteins. This oxidation can be reversed by a ubiquitous monomeric enzyme, the peptide methionine sulfoxide reductase (MsrA), whose activity in vivo requires the thioredoxin-regenerating system. The proposed chemical mechanism ofEscherichia coli MsrA involves three Cys residues (positions 51, 198, and 206). A fourth Cys (position 86) is not important for catalysis. In the absence of a reducing system, 2 mol of methionine are formed per mole of enzyme for wild type and Cys-86 → Ser mutant MsrA, whereas only 1 mol is formed for mutants in which either Cys-198 or Cys-206 is mutated. Reduction of methionine sulfoxide is shown to proceed through the formation of a sulfenic acid intermediate. This intermediate has been characterized by chemical probes and mass spectrometry analyses. Together, the results support a three-step chemical mechanism in vivo: 1) Cys-51 attacks the sulfur atom of the sulfoxide substrate leading, via a rearrangement, to the formation of a sulfenic acid intermediate on Cys-51 and release of 1 mol of methionine/mol of enzyme; 2) the sulfenic acid is then reduced via a double displacement mechanism involving formation of a disulfide bond between Cys-51 and Cys-198, followed by formation of a disulfide bond between Cys-198 and Cys-206, which liberates Cys-51, and 3) the disulfide bond between Cys-198 and Cys-206 is reduced by thioredoxin-dependent recycling system process.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Provirophages and transpovirons as the diverse mobilome of giant viruses

Christelle Desnues; Bernard La Scola; Natalya Yutin; Ghislain Fournous; Catherine Robert; Saïd Azza; Priscilla Jardot; Sonia Monteil; Angélique Campocasso; Eugene V. Koonin; Didier Raoult

A distinct class of infectious agents, the virophages that infect giant viruses of the Mimiviridae family, has been recently described. Here we report the simultaneous discovery of a giant virus of Acanthamoeba polyphaga (Lentille virus) that contains an integrated genome of a virophage (Sputnik 2), and a member of a previously unknown class of mobile genetic elements, the transpovirons. The transpovirons are linear DNA elements of ∼7 kb that encompass six to eight protein-coding genes, two of which are homologous to virophage genes. Fluorescence in situ hybridization showed that the free form of the transpoviron replicates within the giant virus factory and accumulates in high copy numbers inside giant virus particles, Sputnik 2 particles, and amoeba cytoplasm. Analysis of deep-sequencing data showed that the virophage and the transpoviron can integrate in nearly any place in the chromosome of the giant virus host and that, although less frequently, the transpoviron can also be linked to the virophage chromosome. In addition, integrated fragments of transpoviron DNA were detected in several giant virus and Sputnik genomes. Analysis of 19 Mimivirus strains revealed three distinct transpovirons associated with three subgroups of Mimiviruses. The virophage, the transpoviron, and the previously identified self-splicing introns and inteins constitute the complex, interconnected mobilome of the giant viruses and are likely to substantially contribute to interviral gene transfer.


Clinical Infectious Diseases | 2013

First Isolation of Mimivirus in a Patient With Pneumonia

Hanene Saadi; Isabelle Pagnier; Philippe Colson; J. Cherif; M. Beji; Mondher Boughalmi; Saïd Azza; Nicholas Armstrong; Catherine Robert; Ghislain Fournous; Bernard La Scola; Didier Raoult

BACKGROUND Mimiviridae Mimivirus, including the largest known viruses, multiply in amoebae. Mimiviruses have been linked to pneumonia, but they have never been isolated from patients. To further understand the pathogenic role of these viruses, we aimed to isolate them from a patient presenting with pneumonia. METHODS We cultured, on Acanthamoeba polyphaga amoebae, pulmonary samples from 196 Tunisian patients with community-acquired pneumonia during the period 2009-2010. An improved technique was used for Mimivirus isolation, which used agar plates where the growth of giant viruses is revealed by the formation of lysis plaques. Mimivirus serology was tested by microimmunofluorescence and by bidimensional immunoproteomic analysis using Mimivirus strains, to identify specific immunoreactive proteins. The new Mimivirus strain genome sequencing was performed on Roche 454 GS FLX Titanium, then AB SOLiD instruments. RESULTS We successfully isolated a Mimivirus (LBA111), the largest virus ever isolated in a human sample, from a 72-year-old woman presenting with pneumonia. Electron microscopy revealed a Mimivirus-like virion with a size of 554 ± 10 nm. The LBA111 genome is 1.23 megabases, and it is closely related to that of Megavirus chilensis. Furthermore, the serum from the patient reacted specifically to the virus compared to controls. CONCLUSIONS This is the first Mimivirus isolated from a human specimen. The findings presented above together with previous works establish that mimiviruses can be associated with pneumonia. The common occurrence of these viruses in water and soil makes them probable global agents that are worthy of investigation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mimivirus shows dramatic genome reduction after intraamoebal culture

Mickaël Boyer; Saïd Azza; Lina Barrassi; Thomas Klose; Angélique Campocasso; Isabelle Pagnier; Ghislain Fournous; Audrey Borg; Catherine Robert; Xinzheng Zhang; Christelle Desnues; Bernard Henrissat; Michael G. Rossmann; Bernard La Scola; Didier Raoult

Most phagocytic protist viruses have large particles and genomes as well as many laterally acquired genes that may be associated with a sympatric intracellular life (a community-associated lifestyle with viruses, bacteria, and eukaryotes) and the presence of virophages. By subculturing Mimivirus 150 times in a germ-free amoebal host, we observed the emergence of a bald form of the virus that lacked surface fibers and replicated in a morphologically different type of viral factory. When studying a 0.40-μm filtered cloned particle, we found that its genome size shifted from 1.2 (M1) to 0.993 Mb (M4), mainly due to large deletions occurring at both ends of the genome. Some of the lost genes are encoding enzymes required for posttranslational modification of the structural viral proteins, such as glycosyltransferases and ankyrin repeat proteins. Proteomic analysis allowed identification of three proteins, probably required for the assembly of virus fibers. The genes for two of these were found to be deleted from the M4 virus genome. The proteins associated with fibers are highly antigenic and can be recognized by mouse and human antimimivirus antibodies. In addition, the bald strain (M4) was not able to propagate the sputnik virophage. Overall, the Mimivirus transition from a sympatric to an allopatric lifestyle was associated with a stepwise genome reduction and the production of a predominantly bald virophage resistant strain. The new axenic ecosystem allowed the allopatric Mimivirus to lose unnecessary genes that might be involved in the control of competitors.


Genome Biology and Evolution | 2012

Related Giant Viruses in Distant Locations and Different Habitats: Acanthamoeba polyphaga moumouvirus Represents a Third Lineage of the Mimiviridae That Is Close to the Megavirus Lineage

Niyaz Yoosuf; Natalya Yutin; Philippe Colson; Svetlana A. Shabalina; Isabelle Pagnier; Catherine Robert; Saïd Azza; Thomas Klose; Jimson Wong; Michael G. Rossmann; Bernard La Scola; Didier Raoult; Eugene V. Koonin

The 1,021,348 base pair genome sequence of the Acanthamoeba polyphaga moumouvirus, a new member of the Mimiviridae family infecting Acanthamoeba polyphaga, is reported. The moumouvirus represents a third lineage beside mimivirus and megavirus. Thereby, it is a new member of the recently proposed Megavirales order. This giant virus was isolated from a cooling tower water in southeastern France but is most closely related to Megavirus chiliensis, which was isolated from ocean water off the coast of Chile. The moumouvirus is predicted to encode 930 proteins, of which 879 have detectable homologs. Among these predicted proteins, for 702 the closest homolog was detected in Megavirus chiliensis, with the median amino acid sequence identity of 62%. The evolutionary affinity of moumouvirus and megavirus was further supported by phylogenetic tree analysis of conserved genes. The moumouvirus and megavirus genomes share near perfect orthologous gene collinearity in the central part of the genome, with the variations concentrated in the terminal regions. In addition, genomic comparisons of the Mimiviridae reveal substantial gene loss in the moumouvirus lineage. The majority of the remaining moumouvirus proteins are most similar to homologs from other Mimiviridae members, and for 27 genes the closest homolog was found in bacteria. Phylogenetic analysis of these genes supported gene acquisition from diverse bacteria after the separation of the moumouvirus and megavirus lineages. Comparative genome analysis of the three lineages of the Mimiviridae revealed significant mobility of Group I self-splicing introns, with the highest intron content observed in the moumouvirus genome.


The Journal of Infectious Diseases | 2013

Marseillevirus-Like Virus Recovered From Blood Donated by Asymptomatic Humans

Nikolay Popgeorgiev; Mickaël Boyer; Laura Fancello; Sonia Monteil; Catherine Robert; Romain Rivet; Claude Nappez; Saïd Azza; Jacques Chiaroni; Didier Raoult; Christelle Desnues

The study of the human virome is still in its infancy, especially with regard to the viral content of the blood of people who are apparently disease free. In this study, the genome of a new giant virus that is related to the amoeba-infecting pathogen Marseillevirus was recovered from donated blood, using high-throughput sequencing. Viral antigens were identified by an immunoconversion assay. The virus was visualized with transmission electron microscopy and fluorescence in situ hybridization and was grown in human T lymphocytes. Specific antibody reactions were used to identify viral proteins in blood specimens from polymerase chain reactive-positive donors. Finally, we tested 20 blood specimens from additional donors. Three had antibodies directed against this virus, and 2 had circulating viral DNA. This study shows that giant viruses, which are missed by the use of ultrafilters, are part of the human blood virome. The putative pathogenic role of giant viruses in humans remains undefined.


Clinical Infectious Diseases | 2015

Clostridium butyricum strains and dysbiosis linked to necrotizing enterocolitis in preterm neonates

Nadim Cassir; Samia Benamar; Jacques Bou Khalil; Olivier Croce; Marie Saint-Faust; Aurélien Jacquot; Matthieu Million; Saïd Azza; Nicholas Armstrong; Mireille Henry; Priscilla Jardot; Catherine Robert; Catherine Gire; Jean-Christophe Lagier; Eric Chabriere; Eric Ghigo; Hélène Marchandin; Catherine Sartor; Patrick Boutte; Gilles Cambonie; Umberto Simeoni; Didier Raoult; Bernard La Scola

BACKGROUND Necrotizing enterocolitis (NEC) is the most common and serious gastrointestinal disorder among preterm neonates. We aimed to assess a specific gut microbiota profile associated with NEC. METHODS Stool samples and clinical data were collected from 4 geographically independent neonatal intensive care units, over a 48-month period. Thirty stool samples from preterm neonates with NEC (n = 15) and controls (n = 15) were analyzed by 16S ribosomal RNA pyrosequencing and culture-based methods. The results led us to develop a specific quantitative polymerase chain reaction (qPCR) assay for Clostridium butyricum, and we tested stool samples from preterm neonates with NEC (n = 93) and controls (n = 270). We sequenced the whole genome of 16 C. butyricum strains, analyzed their phylogenetic relatedness, tested their culture supernatants for cytotoxic activity, and searched for secreted toxins. RESULTS Clostridium butyricum was specifically associated with NEC using molecular and culture-based methods (15/15 vs 2/15; P < .0001) or qPCR (odds ratio, 45.4 [95% confidence interval, 26.2-78.6]; P < .0001). Culture supernatants of C. butyricum strains from preterm neonates with NEC (n = 14) exhibited significant cytotoxic activity (P = .008), and we identified in all a homologue of the β-hemolysin toxin gene shared by Brachyspira hyodysenteriae, the etiologic agent of swine dysentery. The corresponding protein was secreted by a NEC-associated C. butyricum strain. CONCLUSIONS NEC was associated with C. butyricum strains and dysbiosis with an oxidized, acid, and poorly diversified gut microbiota. Our findings highlight the plausible toxigenic mechanism involved in the pathogenesis of NEC.


Protein Science | 2008

E. coli methionine sulfoxide reductase with a truncated N terminus or C terminus, or both, retains the ability to reduce methionine sulfoxide

Sandrine Boschi-Muller; Saïd Azza; Guy Branlant

The monomeric peptide methionine sulfoxide reductase (MsrA) catalyzes the irreversible thioredoxin‐dependent reduction of methionine sulfoxide. The crystal structure of MsrAs from Escherichia coli and Bos taurus can be described as a central core of about 140 amino acids that contains the active site. The core is wrapped by two long N‐ and C‐terminal extended chains. The catalytic mechanism of the E. coli enzyme has been recently postulated to take place through formation of a sulfenic acid intermediate, followed by reduction of the intermediate via intrathiol‐disulfide exchanges and thioredoxin oxidation. In the present work, truncated MsrAs at the N‐ or C‐terminal end or at both were produced as folded entities. All forms are able to reduce methionine sulfoxide in the presence of dithiothreitol. However, only the N‐terminal truncated form, which possesses the two cysteines located at the C‐terminus, reduces the sulfenic acid intermediate in a thioredoxin‐dependent manner. The wild type displays a ping‐pong mechanism with either thioredoxin or dithiothreitol as reductant. Kinetic saturation is only observed with thioredoxin with a low KM value of 10 μM. Thus, thioredoxin is likely the reductant in vivo. Truncations do not significantly modify the kinetic properties, except for the double truncated form, which displays a 17‐fold decrease in kcat/KMetSO. Alternative mechanisms for sulfenic acid reduction are also presented based on analysis of available MsrA sequences.


Journal of Biological Chemistry | 1997

Comparative Enzymatic Properties of GapB-encoded Erythrose-4-Phosphate Dehydrogenase of Escherichia coliand Phosphorylating Glyceraldehyde-3-phosphate Dehydrogenase

Sandrine Boschi-Muller; Saïd Azza; David Pollastro; Catherine Corbier; Guy Branlant

GapB-encoded protein of Escherichia coli and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) share more than 40% amino acid identity. Most of the amino acids involved in the binding of cofactor and substrates to GAPDH are conserved in GapB-encoded protein. This enzyme shows an efficient non-phosphorylating erythrose-4-phosphate dehydrogenase activity (Zhao, G., Pease, A. J., Bharani, N., and Winkler, M. E. (1995) J. Bacteriol. 177, 2804–2812) but a low phosphorylating glyceraldehyde-3-phosphate dehydrogenase activity, whereas GAPDH shows a high efficient phosphorylating glyceraldehyde-3-phosphate dehydrogenase activity and a low phosphorylating erythrose-4-phosphate dehydrogenase activity. To identify the structural factors responsible for these differences, comparative kinetic and binding studies have been carried out on both GapB-encoded protein of Escherichia coli and GAPDH of Bacillus stearothermophilus. TheK D constant of GapB-encoded protein for NAD is 800-fold higher than that of GAPDH. The chemical mechanism of erythrose 4-phosphate oxidation by GapB-encoded protein is shown to proceed through a two-step mechanism involving covalent intermediates with Cys-149, with rates associated to the acylation and deacylation processes of 280 s−1 and 20 s−1, respectively. No isotopic solvent effect is observed suggesting that the rate-limiting step is not hydrolysis. The rate of oxidation of glyceraldehyde 3-phosphate is 0.12 s−1 and is hydride transfer limiting, at least 2000-fold less efficient compared with that of erythrose 4-phosphate. Thus, it can be concluded that it is only the structure of the substrates that prevails in forming a ternary complex enzyme-NAD-thiohemiacetal productive (or not) for hydride transfer in the acylation step. This conclusion is reinforced by the fact that the rate of oxidation for erythrose 4-phosphate by GAPDH is 0.1 s−1 and is limited by the acylation step, whereas glyceraldehyde 3-phosphate acylation is efficient and is not rate-determining (≥800 s−1). Substituting Asn for His-176 on GapB-encoded protein, a residue postulated to facilitate hydride transfer as a base catalyst, decreases 40-fold thek cat of glyceraldehyde 3-phosphate oxidation. This suggests that the non-efficient positioning of the C-1 atom of glyceraldehyde 3-phosphate relative to the pyridinium of the cofactor within the ternary complex is responsible for the low catalytic efficiency. No phosphorylating activity on erythrose 4-phosphate with GapB-encoded protein is observed although the Pi site is operative as proven by the oxidative phosphorylation of glyceraldehyde 3-phosphate. Thus the binding of inorganic phosphate to the Pi site likely is not productive for attacking efficiently the thioacyl intermediate formed with erythrose 4-phosphate, whereas a water molecule is an efficient nucleophile for the hydrolysis of the thioacyl intermediate. Compared with glyceraldehyde-3-phosphate dehydrogenase activity, this corresponds to an activation of the deacylation step by ≥4.5 kcal·mol−1. Altogether these results suggest subtle structural differences between the active sites of GAPDH and GapB-encoded protein that could be revealed and/or modulated by the structure of the substrate bound. This also indicates that a protein engineering approach could be used to convert a phosphorylating aldehyde dehydrogenase into an efficient non-phosphorylating one andvice versa.

Collaboration


Dive into the Saïd Azza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandrine Boschi-Muller

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christelle Desnues

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia Renesto

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge