Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Said Rabbani is active.

Publication


Featured researches published by Said Rabbani.


Journal of Medicinal Chemistry | 2010

FimH antagonists for the oral treatment of urinary tract infections: from design and synthesis to in vitro and in vivo evaluation.

Tobias Klein; Daniela Abgottspon; Matthias B. Wittwer; Said Rabbani; Janno Herold; Xiaohua Jiang; Simon Kleeb; Christine Lüthi; Meike Scharenberg; Jacqueline Bezençon; Erich Gubler; Lijuan Pang; Martin Smiesko; Brian Cutting; Oliver Schwardt; Beat Ernst

Urinary tract infection (UTI) by uropathogenic Escherichia coli (UPEC) is one of the most common infections, particularly affecting women. The interaction of FimH, a lectin located at the tip of bacterial pili, with high mannose structures is critical for the ability of UPEC to colonize and invade the bladder epithelium. We describe the synthesis and the in vitro/in vivo evaluation of α-D-mannosides with the ability to block the bacteria/host cell interaction. According to the pharmacokinetic properties, a prodrug approach for their evaluation in the UTI mouse model was explored. As a result, an orally available, low molecular weight FimH antagonist was identified with the potential to reduce the colony forming units (CFU) in the urine by 2 orders of magnitude and in the bladder by 4 orders of magnitude. With FimH antagonist, the great potential for the effective treatment of urinary tract infections with a new class of orally available antiinfectives could be demonstrated.


Journal of Medicinal Chemistry | 2012

Antiadhesion Therapy for Urinary Tract Infections—A Balanced PK/PD Profile Proved To Be Key for Success

Xiaohua Jiang; Daniela Abgottspon; Simon Kleeb; Said Rabbani; Meike Scharenberg; Matthias B. Wittwer; Martina Haug; Oliver Schwardt; Beat Ernst

The initial step for the successful establishment of urinary tract infections (UTIs), predominantly caused by uropathogenic Escherichia coli, is the adhesion of bacteria to urothelial cells. This attachment is mediated by FimH, a mannose-binding adhesin, which is expressed on the bacterial surface. To date, UTIs are mainly treated with antibiotics, leading to the ubiquitous problem of increasing resistance against most of the currently available antimicrobials. Therefore, new treatment strategies are urgently needed, avoiding selection pressure and thereby implying a reduced risk of resistance. Here, we present a new class of highly active antimicrobials, targeting the virulence factor FimH. When the most potent representative, an indolinylphenyl mannoside, was administered in a mouse model at the low dosage of 1 mg/kg (corresponding to approximately 25 μg/mouse), the minimal therapeutic concentration to prevent UTI was maintained for more than 8 h. In a treatment study, the colony-forming units in the bladder could be reduced by almost 4 orders of magnitude, comparable to the standard antibiotic treatment with ciprofloxacin (8 mg/kg, sc).


Bioorganic & Medicinal Chemistry | 2011

Design, Synthesis and Biological Evaluation of Mannosyl Triazoles as FimH Antagonists

Oliver Schwardt; Said Rabbani; Margrit Hartmann; Daniela Abgottspon; Matthias B. Wittwer; Simon Kleeb; Adam Zalewski; Martin Smiesko; Brian Cutting; Beat Ernst

Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is one of the most prevalent infectious diseases. Particularly affected are women, who have a 40-50% risk to experience at least one symptomatic UTI episode at some time during their life. In the initial step of the infection, the lectin FimH, located at the tip of bacterial pili, interacts with the high-mannosylated uroplakin Ia glycoprotein on the urinary bladder mucosa. This interaction is critical for the ability of UPEC to colonize and invade the bladder epithelium. X-ray structures of FimH co-crystallized with two different ligands, the physiological binding epitope oligomannose-3 and the antagonist biphenyl α-D-mannoside 4a revealed different binding modes, an in-docking-mode and an out-docking-mode, respectively. To accomplish the in-docking-mode, that is the docking mode where the ligand is hosted by the so-called tyrosine gate, FimH antagonists with increased flexibility were designed and synthesized. All derivatives 5-8 showed nanomolar affinities, but only one representative, the 4-pyridiyl derivative 5j, was as potent as the reference compound n-heptyl α-D-mannoside (1b). Furthermore, a loss of affinity was observed for C-glycosides and derivatives where the triazole aglycone is directly N-linked to the anomeric center. A conformational analysis by NMR revealed that the triazolyl-methyl-C-mannosides 8 adopt an unusual (1)C(4) chair conformation, explaining the comparably lower affinity of these compounds. Furthermore, to address the druglikeness of this new class of FimH antagonists, selected pharmacokinetic parameters, which are critical for oral bioavailability (lipophilicity, solubility, and membrane permeation), were determined.


ChemMedChem | 2012

FimH Antagonists: Structure–Activity and Structure–Property Relationships for Biphenyl α-D-Mannopyranosides

Lijuan Pang; Simon Kleeb; Katrin Lemme; Said Rabbani; Meike Scharenberg; Adam Zalewski; Florentina Schädler; Oliver Schwardt; Beat Ernst

Urinary tract infections (UTIs) are caused primarily by uropathogenic Escherichia coli (UPEC), which encode filamentous surface‐adhesive organelles called type 1 pili. FimH is located at the tips of these pili. The initial attachment of UPEC to host cells is mediated by the interaction of the carbohydrate recognition domain (CRD) of FimH with oligomannosides on urothelial cells. Blocking these lectins with carbohydrates or analogues thereof prevents bacterial adhesion to host cells and therefore offers a potential therapeutic approach for prevention and/or treatment of UTIs. Although numerous FimH antagonists have been developed so far, few of them meet the requirement for clinical application due to poor pharmacokinetics. Additionally, the binding mode of an antagonist to the CRD of FimH can switch from an in‐docking mode to an out‐docking mode, depending on the structure of the antagonist. In this communication, biphenyl α‐D‐mannosides were modified to improve their binding affinity, to explore their binding mode, and to optimize their pharmacokinetic properties. The inhibitory potential of the FimH antagonists was measured in a cell‐free competitive binding assay, a cell‐based flow cytometry assay, and by isothermal titration calorimetry. Furthermore, pharmacokinetic properties such as log D, solubility, and membrane permeation were analyzed. As a result, a structure–activity and structure–property relationships were established for a series of biphenyl α‐D‐mannosides.


Journal of the American Chemical Society | 2013

Stabilization of Branched Oligosaccharides: Lewis x Benefits from a Nonconventional C−H···O Hydrogen Bond

Mirko Zierke; Martin Smiesko; Said Rabbani; Thomas Aeschbacher; Brian Cutting; Frédéric H.-T. Allain; Mario Schubert; Beat Ernst

Although animal lectins usually show a high degree of specificity for glycan structures, their single-site binding affinities are typically weak, a drawback which is often compensated in biological systems by an oligovalent presentation of carbohydrate epitopes. For the design of monovalent glycomimetics, structural information regarding solution and bound conformation of the carbohydrate lead represents a valuable starting point. In this paper, we focus on the conformation of the trisaccharide Le(x) (Gal[Fucα(1-3)]β(1-4)GlcNAc). Mainly because of the unfavorable tumbling regime, the elucidation of the solution conformation of Le(x) by NMR has only been partially successful so far. Le(x) was therefore attached to a (13)C,(15)N-labeled protein. (13)C,(15)N-filtered NOESY NMR techniques at ultrahigh field allowed increasing the maximal NOE enhancement, resulting in a high number of distance restraints per glycosidic bond and, consequently, a well-defined structure. In addition to the known contributors to the conformational restriction of the Le(x) structure (exoanomeric effect, steric compression induced by the NHAc group adjacent to the linking position of L-fucose, and the hydrophobic interaction of L-fucose with the β-face of D-galactose), a nonconventional C-H···O hydrogen bond between H-C(5) of L-fucose and O(5) of D-galactose was identified. According to quantum mechanical calculations, this C-H···O hydrogen bond is the most prominent factor in stabilization, contributing 40% of the total stabilization energy. We therefore propose that the nonconventional hydrogen bond contributing to a reduction of the conformational flexibility of the Le(x) core represents a novel element of the glycocode. Its relevance to the stabilization of related branched oligosaccharides is currently being studied.


Analytical Biochemistry | 2010

Expression of the carbohydrate recognition domain of FimH and development of a competitive binding assay.

Said Rabbani; Xiaohua Jiang; Oliver Schwardt; Beat Ernst

Uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections (UTIs). In the first step of this infective process, the virulence factor FimH located on type 1 pili allows UPEC to specifically adhere to oligosaccharides, which are part of glycoproteins on the urinary bladder mucosa. This initial step prevents the clearance of E. coli from the urinary tract and enables the invasion of the host cells. Because FimH antagonists can block this interaction, they exhibit a promising therapeutic potential as anti-infectives. For the evaluation of their binding properties, a reliable, target-based affinity assay is required. Here, we describe the expression and purification of the carbohydrate recognition domain of FimH (FimH-CRD) as well as the development of a competitive binding assay. FimH-CRD linked with a thrombin cleavage site to a 6His-tag is recombinantly expressed and purified by affinity chromatography. For the evaluation of FimH antagonists, a cell-free binding assay based on the interaction of a biotinylated polyacrylamide glycopolymer with the FimH-CRD was developed. Complexation of the biotinylated glycopolymer with streptavidin coupled to horseradish peroxidase allows the quantification of the binding properties of FimH antagonists. The assay format was optimized and validated by a comparison with affinity data from reported assays.


Journal of the American Chemical Society | 2013

Nanomolar E-selectin antagonists with prolonged half-lives by a fragment-based approach.

Jonas K. Egger; Céline Weckerle; Brian Cutting; Oliver Schwardt; Said Rabbani; Katrin Lemme; Beat Ernst

Selectins, a family of C-type lectins, play a key role in inflammatory diseases (e.g., asthma and arthritis). However, the only millimolar affinity of sialyl Lewis(x) (sLe(x)), which is the common tetrasaccharide epitope of all physiological selectin ligands, has been a major obstacle to the development of selectin antagonists for therapeutic applications. In a fragment-based approach guided by NMR, ligands binding to a second site in close proximity to a sLe(x) mimic were identified. A library of antagonists obtained by connecting the sLe(x) mimic to the best second-site ligand via triazole linkers of different lengths was evaluated by surface plasmon resonance. Detailed analysis of the five most promising candidates revealed antagonists with K(D) values ranging from 30 to 89 nM. In contrast to carbohydrate-lectin complexes with typical half-lives (t(1/2)) in the range of one second or even less, these fragment-based selectin antagonists show t1/2 of several minutes. They exhibit a promising starting point for the development of novel anti-inflammatory drugs.


Journal of Medicinal Chemistry | 2012

Target Selectivity of FimH Antagonists

Meike Scharenberg; Oliver Schwardt; Said Rabbani; Beat Ernst

Mannose-based FimH antagonists are considered new therapeutics for the treatment of urinary tract infections (UTIs). They prevent the adhesion of uropathogenic Escherichia coli (UPEC) to urothelial cell surfaces triggered by the lectin FimH, which is located at the tip of bacterial type 1 pili. Because all reported FimH antagonists are α-d-mannosides, they are also potential ligands of mannose receptors of the human host system. We therefore investigated the selectivity range of five FimH antagonists belonging to different compound families by comparing their affinities for FimH and eight human mannose receptors. On the basis of the detected selectivity range of approximately 5 orders of magnitude, no adverse side effects resulting from nonselective binding to the human receptors have to be expected. FimH antagonists can therefore be further considered as potential therapeutics for the treatment of UTI.


Bioorganic & Medicinal Chemistry | 2009

Design, synthesis and evaluation of monovalent ligands for the asialoglycoprotein receptor (ASGP-R)

Daniela Stokmaier; Oleg Khorev; Brian Cutting; Rita Born; Daniel Ricklin; Thomas O.G. Ernst; Fabienne Böni; Kathrin Schwingruber; Martin Gentner; Matthias B. Wittwer; Morena Spreafico; Angelo Vedani; Said Rabbani; Oliver Schwardt; Beat Ernst

A series of novel aryl-substituted triazolyl D-galactosamine derivatives was synthesized as ligands for the carbohydrate recognition domain of the major subunit H1 (H1-CRD) of the human asialoglycoprotein receptor (ASGP-R). The compounds were biologically evaluated with a newly developed competitive binding assay, surface plasmon resonance and by a competitive NMR binding experiment. With compound 1b, a new ligand with a twofold improved affinity to the best so far known D-GalNAc was identified. This small, drug-like ligand can be used as targeting device for drug delivery to hepatocytes.


Journal of Medicinal Chemistry | 2010

Low Molecular Weight Antagonists of the Myelin-Associated Glycoprotein: Synthesis, Docking, and Biological Evaluation

Stefanie Mesch; Delia Moser; Daniel S. Strasser; Antje Kelm; Brian Cutting; Gianluca Rossato; Angelo Vedani; Hendrik Koliwer-Brandl; Matthias B. Wittwer; Said Rabbani; Oliver Schwardt; Soerge Kelm; Beat Ernst

The injured adult mammalian central nervous system is an inhibitory environment for axon regeneration due to specific inhibitors, among them the myelin-associated glycoprotein (MAG), a member of the Siglec family (sialic-acid binding immunoglobulin-like lectin). In earlier studies, we identified the lead structure 5, which shows a 250-fold improved in vitro affinity for MAG compared to the tetrasaccharide binding epitope of GQ1balpha (1), the best physiological MAG ligand described so far. By modifying the 2- and 5-position, the affinity of 5 could be further improved to the nanomolar range (-->19a). Docking studies to a homology model of MAG allowed the rationalization of the experimental binding properties. Finally, pharmacokinetic parameters (stability in the cerebrospinal fluid, logD and permeation through the BBB) indicate the drug-like properties of the high-affinity antagonist 19a.

Collaboration


Dive into the Said Rabbani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge