Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saied M. Soliman is active.

Publication


Featured researches published by Saied M. Soliman.


Inorganic Chemistry | 2010

Synthesis, Crystal Structure, Quantum Chemical Calculations, DNA Interactions, and Antimicrobial Activity of [Ag(2-amino-3-methylpyridine)2]NO3 and [Ag(pyridine-2-carboxaldoxime)NO3]

Morsy A. M. Abu-Youssef; Saied M. Soliman; Vratislav Langer; Yousry M. Gohar; Ahmed A. Hasanen; Mohamed A. Makhyoun; Amira Zaky; Lars Öhrström

[Ag(2-amino-3-methylpyridine)(2)]NO(3) (1) and [Ag(pyridine-2-carboxaldoxime)NO(3)] (2) were prepared from corresponding ligands and AgNO(3) in water/ethanol solutions, and the products were characterized by IR, elemental analysis, NMR, and TGA. The X-ray crystal structures of the two compounds show that the geometry around the silver(I) ion is bent for complex 1 with nitrate as an anion and trigonal planar for complex 2 with nitrate coordinated. ESI-MS results of solutions of 2 indicate the independent existence in solution of the [Ag(pyridine-2-carboxaldoxime)](+) ion. The geometries of the complexes are well described by DFT calculations using the ZORA relativistic approach. The compounds were tested against 14 different clinically isolated and four ATCC standard bacteria and yeasts and also compared with 17 commonly used antibiotics. Both 1 and 2 exhibited considerable activity against S. lutea , M. lutea , and S. aureus and against the yeast Candida albicans , while 2-amino-3-methylpyridine is slightly active and pyridine-2-carboxaldoxime shows no antimicrobial activity. In addition, the interaction of these metal complexes with DNA was investigated. Both 1 and 2 bind to DNA and reduce its electrophoretic mobility with different patterns of migration, while the ligands themselves induce no change.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015

Experimental and theoretical spectroscopic studies, HOMO-LUMO, NBO analyses and thione-thiol tautomerism of a new hybrid of 1,3,4-oxadiazole-thione with quinazolin-4-one.

Saied M. Soliman; Mohamed Hagar; Farahate Ibid; El Sayed H. El Ashry

The hybrid 3-(4-chlorophenyl)-2-[(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)methylthio]quinazolin-4(3H)-one has been synthesized and characterized using elemental analysis, FTIR and NMR spectroscopy. The thione-thiol tautomeric equilibria has been studied using both DFT/B3LYP and HF methods at different basis sets. The results of calculations showed predominance of the thione form. The molecular structure and vibrational spectra of the stable tautomer are predicted using the same level of theory. The complete assignments of the vibrational modes were performed on the basis of potential energy distribution (PED). The 6-311++G(d,p) gave the best results compared to the experimental data. The chemical shift values of the two tautomers are calculated using GIAO method. The NH proton of the thione tautomer have chemical shift value closer to the experimental data compared to the SH proton of the thiol one. The electronic transitions are predicted using the TD-DFT calculations at B3LYP/6-311++G(d,p) level of theory. The calculated polarizability and first hyperpolarizability showed that the studied compound has better NLO properties than urea. The molecular electrostatic potential (MEP) analysis reveals the sites for electrophilic and nucleophilic attack in the molecule. NBO analysis is carried out to investigate the stabilization energy of various intramolecular charge transfer interactions within the studied molecule.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015

Synthesis, NMR, FT-IR, X-ray structural characterization, DFT analysis and isomerism aspects of 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione.

Assem Barakat; Hany J. Al-Najjar; Abdullah Mohammed Al-Majid; Saied M. Soliman; Yahia N. Mabkhot; Mohammed Rafi Shaik; Hazem A. Ghabbour; Hoong-Kun Fun

The synthesis and spectral characterization of the 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione;3 was reported. The solid state molecular structure of 3 was studied using X-ray crystallography. The relative stabilities of the seven possible isomers of 3 were calculated by DFT/B3LYP method using 6-311 G(d,p) basis set. The calculated total energies and thermodynamic parameters were used to predict the relative stabilities of these isomers. The effect of solvent polarity on the relative stability of these isomers was studied at the same level of theory using PCM. It was found that the keto form, (T0), is the most stable isomer both in the gaseous state and solution. In solution, the calculated total energies of all isomers are decreased indicating that all isomers are stabilized by the solvent effect. The vibrational spectra of the most stable isomer, 3(T0) are calculated using the same level of theory and the results are compared with the experimentally measured FTIR spectra. Good correlation was obtained between the experimental and calculated vibrational frequencies (R(2)=0.9992). The electronic spectra of 3(T0) in gas phase as well as in solutions were calculated using the TD-DFT method. All the predicted electronic transitions showed very little spectral shifts and increase in the intensity of absorption due to solvent effect. Also the (1)H- and (13)C-NMR chemical shifts of the stable isomer were calculated and the results were correlated with the experimental data. Good correlations between the experimental and calculated chemical shifts were obtained.


Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry | 2014

Towards the chemical control of molecular packing: syntheses and crystal structures of three trans-(NiL4(NCS)2) complexes

Saied M. Soliman; Zahia B. Elzawy; Morsy A. M. Abu-Youssef; Jörg H. Albering; Karl Gatterer; Lars Öhrström; Sidney F. A. Kettle

Three nickel(II) isothiocyanato complexes of the formula trans-[NiL4(NCS)2] (L = ethylisonicotinate, methylisonicotinate and 4-benzoylpyridine) have been prepared: [Ni(ethylisonicotinate)4(NCS)2] (I), [Ni(methylisonicotinate)4(NCS)2] (II) and [Ni(4-benzoylpyridine)4(NCS)2] (III). All three complexes are monomeric and have a distorted octahedral geometry around Ni(II). Despite their apparent molecular similarity, the crystal density of (III) (1.454 g cm(-3)) is significantly higher than that of (I) and (II) (both 1.408 g cm(-3)), suggesting that the molecular packing is most efficient in (III). A study of the molecular Hirshfeld surfaces, together with density functional theory (DFT) calculations, provide insights into the origin of the molecular packing features, and it is suggested that the greater crystal density of (III) results from smaller intermolecular electrostatic repulsions.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2016

One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV–Vis) of novel 2-(4,6-dimethoxy-1,3,5-triazin-2-yl) amino acid ester derivatives

Ayman El-Faham; Saied M. Soliman; Sameh M. Osman; Hazem A. Ghabbour; Mohammed Rafiq H. Siddiqui; Hoong-Kun Fun; Fernando Albericio

Novel series of 2-(4,6-dimethoxy,1,3,5-triazin-2-yl) amino acid ester derivatives were synthesized using simple one pot method in methanol. The products were obtained in high yields and purities as observed from their spectral data, elemental analyses, GC-MS and X-ray crystallographic analysis. The B3LYP/6-311G(d,p) calculated molecular structures are well correlated with the geometrical parameters obtained from the X-ray analyses. The spectroscopic properties such as IR vibrational modes, NMR chemical shifts and UV-Vis electronic transitions were discussed both experimentally and theoretically. The IR vibrational frequencies showed good correlations with the experimental data (R(2)=0.9961-0.9995). The electronic spectra were assigned based on the TD-DFT results. Intense electronic transition band is calculated at 198.1 nm (f=0.1389), 204.2 nm (f=0.2053), 205.0 (f=0.1704) and 205.7 (0.2971) for compounds 6a-i, respectively. The molecular orbital energy levels contributed in the longest wavelength transition band were explained. For all compounds, the experimental wavelengths showed red shifts compared to the calculations due to the solvent effect. The NMR chemical shifts were calculated using GIAO method. The NBO analyses were performed to predict the stabilization energies due to the electron delocalization processes occur in the studied systems.


Molecules | 2015

Synthesis, Molecular Structure and Spectroscopic Investigations of Novel Fluorinated Spiro Heterocycles

Mohammad Shahidul Islam; Abdullah Mohammed Al-Majid; Assem Barakat; Saied M. Soliman; Hazem A. Ghabbour; Ching Quah; Hoong-Kun Fun

This paper describes an efficient and regioselective method for the synthesis of novel fluorinated spiro-heterocycles in excellent yield by cascade [5+1] double Michael addition reactions. The compounds 7,11-bis(4-fluorophenyl)-2,4-dimethyl- 2,4-diazaspiro[5.5] undecane-1,3,5,9-tetraone (3a) and 2,4-dimethyl-7,11-bis (4-(trifluoromethyl)phenyl)-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3b) were characterized by single-crystal X-ray diffraction, FT-IR and NMR techniques. The optimized geometrical parameters, infrared vibrational frequencies and NMR chemical shifts of the studied compounds have also been calculated using the density functional theory (DFT) method, using Becke-3-Lee-Yang-Parr functional and the 6-311G(d,p) basis set. There is good agreement between the experimentally determined structural parameters, vibrational frequencies and NMR chemical shifts of the studied compounds and those predicted theoretically. The calculated natural atomic charges using NBO method showed higher polarity of 3a compared to 3b.The calculated electronic spectra are also discussed based on the TD-DFT calculations.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015

Molecular structure, spectroscopic properties, NLO, HOMO–LUMO and NBO analyses of 6-hydroxy-3(2H)-pyridazinone

Saied M. Soliman; Jörg H. Albering; Morsy A. M. Abu-Youssef

The molecular structure and relative stabilities of the six possible isomers of 6-hydroxy-3(2H)-pyridazinone (DHP) in the gas phase and in solutions of different polarities are predicted using the B3LYP/6-311++G(d,p) method. The oxo-hydroxo isomer is the most stable form in the gas phase and in solution. These results agree with our reported X-ray structure. The effect of solvents on the spectroscopic properties of the most stable isomer has been studied using the polarized continuum method (PCM) at the same level of theory. The vibrational spectra of the compound studied are calculated and compared with the experimentally measured FTIR spectra. The electronic spectra in gas phase and in solution were calculated using the TD-DFT method. The most intense absorption band is predicted at 312.4 nm and belongs mainly to a π→π(*) transition. In polar solvents, this spectral band undergoes a hypsochromic shift. Two stable dimer forms were calculated at same level of theory. Dimer A is more stable than dimer B, by 6.66 kcal mol(-1). The former is stabilized by stronger O-H⋯O H-bonds compared to the weaker N-H⋯O interactions in the latter. The effect of these H-bonding interactions on the molecular structure and vibrational spectra of these compounds are predicted. NBO analyses were carried out to investigate the stabilization energy of various inter- and intramolecular charge transfer interactions within the systems studied.


CrystEngComm | 2016

Topology analysis reveals supramolecular organisation of 96 large complex ions into one geometrical object

Morsy A. M. Abu-Youssef; Saied M. Soliman; Mona Sharaf; Jörg H. Albering; Lars Öhrström

It is shown that the highly complex crystal structure of [Ag(4-(pyrrolidin-1-yl)pyridine)2]NO3·1/2H2O, 1, with 12 symmetry-independent Ag+ ions and 96 units of complex ions in a unit cell can be understood by the ubiquitous srs topology, reducing thousands of atom positions into a single geometrical object in one go.


Molecules | 2016

Ultrasonic Synthesis, Molecular Structure and Mechanistic Study of 1,3-Dipolar Cycloaddition Reaction of 1-Alkynylpyridinium-3-olate and Acetylene Derivatives

Asmaa Aboelnaga; Mohamed Hagar; Saied M. Soliman

Regioselectively, ethyl propiolate reacted with 1-(propergyl)-pyridinium-3-olate to give two regioisomers; ethyl 4-oxo-8-(prop-2-ynyl)-8-aza-bicyclo(3.2.1)octa-2,6-diene-6-carboxylate 4, ethyl 2-oxo-8-(prop-2-ynyl)-8-aza-bicyclo(3.2.1)octa-3,6-diene-6-carboxylate 5 as well as ethyl 2,6-dihydro-6-(prop-2-ynyl)furo(2,3-c)pyridine-3-carboxylate 6. The obtained compounds were identified by their spectral (IR, mass and NMR) data. Moreover, DFT quantum chemical calculations were used to study the mechanism of the cycloaddition reaction. The regioselectivity was explained using transition state calculations, where the calculations agreed with the formation of products 4 and 5 in almost the same ratio. The reaction was also extended for diphenylaceylene as dipolarophile to give only two products instead of three.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015

Synthesis of two new silver(I) complexes with 3-bromoquinoline: Molecular structure, spectroscopic characterizations and DFT studies.

Saied M. Soliman; Morsy A. M. Abu-Youssef; Taher S. Kassem; Rania Assem

Two new Ag(+) complexes with 3-bromoquinoline (3BrQ) have been synthesized and characterized using elemental analysis, FTIR, NMR and mass spectra. The studied complexes have the formula [Ag(3BrQ)(OAC)]; 1 and [Ag(3BrQ)3(TCA)]; 2 where OAC and TCA are acetate and trichloroacetate, respectively. Based on the DFT calculations, 1 and 2 showed distorted trigonal planar and distorted tetrahedral coordination geometry. The electronic properties such as dipole moment (μ), polarizability (α0), HOMO and LUMO energies are calculated using the same level of theory. These electronic parameters were used to predict the nonlinear optical properties of the studied compounds. The studied silver complexes were predicted to be better nonlinear optical materials than urea. The electronic spectra of these complexes are calculated using the TD-DFT calculations. The infrared vibrational spectra were assigned based on the potential energy distribution (PED) analysis. The calculated (1)H NMR chemical shift values using GIAO approach showed good agreement with the experimental data. The intramolecular charge transfer interactions of the title molecules were studied by natural bond orbital (NBO) analysis.

Collaboration


Dive into the Saied M. Soliman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg H. Albering

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hoong-Kun Fun

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge