Saif M. Mohammad
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saif M. Mohammad.
computational intelligence | 2013
Saif M. Mohammad; Peter D. Turney
Even though considerable attention has been given to the polarity of words (positive and negative) and the creation of large polarity lexicons, research in emotion analysis has had to rely on limited and small emotion lexicons. In this paper, we show how the combined strength and wisdom of the crowds can be used to generate a large, high‐quality, word–emotion and word–polarity association lexicon quickly and inexpensively. We enumerate the challenges in emotion annotation in a crowdsourcing scenario and propose solutions to address them. Most notably, in addition to questions about emotions associated with terms, we show how the inclusion of a word choice question can discourage malicious data entry, help to identify instances where the annotator may not be familiar with the target term (allowing us to reject such annotations), and help to obtain annotations at sense level (rather than at word level). We conducted experiments on how to formulate the emotion‐annotation questions, and show that asking if a term is associated with an emotion leads to markedly higher interannotator agreement than that obtained by asking if a term evokes an emotion.
empirical methods in natural language processing | 2009
Saif M. Mohammad; Cody Dunne; Bonnie J. Dorr
Sentiment analysis often relies on a semantic orientation lexicon of positive and negative words. A number of approaches have been proposed for creating such lexicons, but they tend to be computationally expensive, and usually rely on significant manual annotation and large corpora. Most of these methods use WordNet. In contrast, we propose a simple approach to generate a high-coverage semantic orientation lexicon, which includes both individual words and multi-word expressions, using only a Roget-like thesaurus and a handful of affixes. Further, the lexicon has properties that support the Polyanna Hypothesis. Using the General Inquirer as gold standard, we show that our lexicon has 14 percentage points more correct entries than the leading WordNet-based high-coverage lexicon (SentiWordNet). In an extrinsic evaluation, we obtain significantly higher performance in determining phrase polarity using our thesaurus-based lexicon than with any other. Additionally, we explore the use of visualization techniques to gain insight into the our algorithm beyond the evaluations mentioned above.
north american chapter of the association for computational linguistics | 2016
Saif M. Mohammad; Svetlana Kiritchenko; Parinaz Sobhani; Xiaodan Zhu; Colin Cherry
Here for the first time we present a shared task on detecting stance from tweets: given a tweet and a target entity (person, organization, etc.), automatic natural language systems must determine whether the tweeter is in favor of the given target, against the given target, or whether neither inference is likely. The target of interest may or may not be referred to in the tweet, and it may or may not be the target of opinion. Two tasks are proposed. Task A is a traditional supervised classification task where 70% of the annotated data for a target is used as training and the rest for testing. For Task B, we use as test data all of the instances for a new target (not used in task A) and no training data is provided. Our shared task received submissions from 19 teams for Task A and from 9 teams for Task B. The highest classification F-score obtained was 67.82 for Task A and 56.28 for Task B. However, systems found it markedly more difficult to infer stance towards the target of interest from tweets that express opinion towards another entity.
international conference on computational linguistics | 2014
Svetlana Kiritchenko; Xiaodan Zhu; Colin Cherry; Saif M. Mohammad
Reviews depict sentiments of customers towards various aspects of a product or service. Some of these aspects can be grouped into coarser aspect categories. SemEval-2014 had a shared task (Task 4) on aspect-level sentiment analysis, with over 30 teams participated. In this paper, we describe our submissions, which stood first in detecting aspect categories, first in detecting sentiment towards aspect categories, third in detecting aspect terms, and first and second in detecting sentiment towards aspect terms in the laptop and restaurant domains, respectively.
computational intelligence | 2015
Saif M. Mohammad; Svetlana Kiritchenko
Detecting emotions in microblogs and social media posts has applications for industry, health, and security. Statistical, supervised automatic methods for emotion detection rely on text that is labeled for emotions, but such data are rare and available for only a handful of basic emotions. In this article, we show that emotion‐word hashtags are good manual labels of emotions in tweets. We also propose a method to generate a large lexicon of word–emotion associations from this emotion‐labeled tweet corpus. This is the first lexicon with real‐valued word–emotion association scores. We begin with experiments for six basic emotions and show that the hashtag annotations are consistent and match with the annotations of trained judges. We also show how the extracted tweet corpus and word–emotion associations can be used to improve emotion classification accuracy in a different nontweet domain.
international conference on computational linguistics | 2014
Xiaodan Zhu; Svetlana Kiritchenko; Saif M. Mohammad
This paper describes state-of-the-art statistical systems for automatic sentiment analysis of tweets. In a Semeval-2014 shared task (Task 9), our submissions obtained highest scores in the term-level sentiment classification subtask on both the 2013 and 2014 tweets test sets. In the message-level sentiment classification task, our submissions obtained highest scores on the LiveJournal blog posts test set, sarcastic tweets test set, and the 2013 SMS test set. These systems build on our SemEval-2013 sentiment analysis systems (Mohammad et al., 2013) which ranked first in both the termand message-level subtasks in 2013. Key improvements over the 2013 systems are in the handling of negation. We create separate tweet-specific sentiment lexicons for terms in affirmative contexts and in negated contexts.
Information Processing and Management | 2015
Saif M. Mohammad; Xiaodan Zhu; Svetlana Kiritchenko; Joel D. Martin
We automatically compile a dataset of 2012 US presidential election tweets.We annotate the tweets for sentiment, emotion, style, and purpose.We show that the tweets convey negative emotions twice as often as positive.We describe two automatic systems that predict emotion and purpose in tweets. Social media is playing a growing role in elections world-wide. Thus, automatically analyzing electoral tweets has applications in understanding how public sentiment is shaped, tracking public sentiment and polarization with respect to candidates and issues, understanding the impact of tweets from various entities, etc. Here, for the first time, we automatically annotate a set of 2012 US presidential election tweets for a number of attributes pertaining to sentiment, emotion, purpose, and style by crowdsourcing. Overall, more than 100,000 crowdsourced responses were obtained for 13 questions on emotions, style, and purpose. Additionally, we show through an analysis of these annotations that purpose, even though correlated with emotions, is significantly different. Finally, we describe how we developed automatic classifiers, using features from state-of-the-art sentiment analysis systems, to predict emotion and purpose labels, respectively, in new unseen tweets. These experiments establish baseline results for automatic systems on this new data.
Emotion Measurement | 2016
Saif M. Mohammad
Abstract Sentiment analysis is the task of automatically determining from text the attitude, emotion, or some other affectual state of the author. This chapter summarizes the diverse landscape of tasks and applications associated with sentiment analysis. We outline key challenges stemming from the complexity and subtlety of language use, the prevalence of creative and non-standard language, and the lack of paralinguistic information, such as tone and stress markers. We describe automatic systems and datasets commonly used in sentiment analysis. We summarize several manual and automatic approaches to creating valence- and emotion-association lexicons. We also discuss preliminary approaches for sentiment composition (how smaller units of text combine to express sentiment) and approaches for detecting sentiment in figurative and metaphoric language—these are the areas where we expect to see significant work in the near future.
Computational Linguistics | 2013
Saif M. Mohammad; Bonnie J. Dorr; Graeme Hirst; Peter D. Turney
Knowing the degree of semantic contrast between words has widespread application in natural language processing, including machine translation, information retrieval, and dialogue systems. Manually created lexicons focus on opposites, such as hot and cold. Opposites are of many kinds such as antipodals, complementaries, and gradable. Existing lexicons often do not classify opposites into the different kinds, however. They also do not explicitly list word pairs that are not opposites but yet have some degree of contrast in meaning, such as warm and cold or tropical and freezing. We propose an automatic method to identify contrasting word pairs that is based on the hypothesis that if a pair of words, A and B, are contrasting, then there is a pair of opposites, C and D, such that A and C are strongly related and B and D are strongly related. (For example, there exists the pair of opposites hot and cold such that tropical is related to hot, and freezing is related to cold.) We will call this the contrast hypothesis.We begin with a large crowdsourcing experiment to determine the amount of human agreement on the concept of oppositeness and its different kinds. In the process, we flesh out key features of different kinds of opposites. We then present an automatic and empirical measure of lexical contrast that relies on the contrast hypothesis, corpus statistics, and the structure of a Roget-like thesaurus. We show how, using four different data sets, we evaluated our approach on two different tasks, solving “most contrasting word” questions and distinguishing synonyms from opposites. The results are analyzed across four parts of speech and across five different kinds of opposites. We show that the proposed measure of lexical contrast obtains high precision and large coverage, outperforming existing methods.
decision support systems | 2012
Saif M. Mohammad
In this paper, we show how sentiment analysis can be used in tandem with effective visualizations to quantify and track emotions in mail and books. We study a number of specific datasets and show, among other things, how collections of texts can be organized for affect-based search and how books portray different entities through co-occurring emotion words. Analysis of the Enron Email Corpus reveals that there are marked differences across genders in how they use emotion words in work-place email. Finally, we show that fairy tales have more extreme emotion densities than novels.