Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saijaliisa Kangasjärvi is active.

Publication


Featured researches published by Saijaliisa Kangasjärvi.


Journal of Experimental Botany | 2012

Photosynthesis, photorespiration, and light signalling in defence responses

Saijaliisa Kangasjärvi; Jenny Neukermans; Shengchun Li; Eva-Mari Aro; Graham Noctor

Visible light is the basic energetic driver of plant biomass production through photosynthesis. The constantly fluctuating availability of light and other environmental factors means that the photosynthetic apparatus must be able to operate in a dynamic fashion appropriate to the prevailing conditions. Dynamic regulation is achieved through an array of homeostatic control mechanisms that both respond to and influence cellular energy and reductant status. In addition, light availability and quality are continuously monitored by plants through photoreceptors. Outside the laboratory growth room, it is within the context of complex changes in energy and signalling status that plants must regulate pathways to deal with biotic challenges, and this can be influenced by changes in the highly energetic photosynthetic pathways and in the turnover of the photosynthetic machinery. Because of this, defence responses are neither simple nor easily predictable, but rather conditioned by the nutritional and signalling status of the plant cell. This review discusses recent data and emerging concepts of how recognized defence pathways interact with and are influenced by light-dependent processes. Particular emphasis is placed on the potential roles of the chloroplast, photorespiration, and photoreceptor-associated pathways in regulating the outcome of interactions between plants and pathogenic organisms.


Plant Physiology | 2010

Thylakoid Protein Phosphorylation in Higher Plant Chloroplasts Optimizes Electron Transfer under Fluctuating Light

Mikko Tikkanen; Michele Grieco; Saijaliisa Kangasjärvi; Eva-Mari Aro

Several proteins of photosystem II (PSII) and its light-harvesting antenna (LHCII) are reversibly phosphorylated according to light quantity and quality. Nevertheless, the interdependence of protein phosphorylation, nonphotochemical quenching, and efficiency of electron transfer in the thylakoid membrane has remained elusive. These questions were addressed by investigating in parallel the wild type and the stn7, stn8, and stn7 stn8 kinase mutants of Arabidopsis (Arabidopsis thaliana), using the stn7 npq4, npq4, npq1, and pgr5 mutants as controls. Phosphorylation of PSII-LHCII proteins is strongly and dynamically regulated according to white light intensity. Yet, the changes in phosphorylation do not notably modify the relative excitation energy distribution between PSII and PSI, as typically occurs when phosphorylation is induced by “state 2” light that selectively excites PSII and induces the phosphorylation of both the PSII core and LHCII proteins. On the contrary, under low-light conditions, when excitation energy transfer from LHCII to reaction centers is efficient, the STN7-dependent LHCII protein phosphorylation guarantees a balanced distribution of excitation energy to both photosystems. The importance of this regulation diminishes at high light upon induction of thermal dissipation of excitation energy. Lack of the STN7 kinase, and thus the capacity for equal distribution of excitation energy to PSII and PSI, causes relative overexcitation of PSII under low light but not under high light, leading to disturbed maintenance of fluent electron flow under fluctuating light intensities. The physiological relevance of the STN7-dependent regulation is evidenced by severely stunted phenotypes of the stn7 and stn7 stn8 mutants under strongly fluctuating light conditions.


BMC Plant Biology | 2010

Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis

Michael Wrzaczek; Mikael Brosché; Jarkko Salojärvi; Saijaliisa Kangasjärvi; Niina Idänheimo; Sophia Mersmann; Silke Robatzek; Stanislaw Karpinski; Barbara Karpinska; Jaakko Kangasjärvi

BackgroundPlant Receptor-like/Pelle kinases (RLK) are a group of conserved signalling components that regulate developmental programs and responses to biotic and abiotic stresses. One of the largest RLK groups is formed by the Domain of Unknown Function 26 (DUF26) RLKs, also called Cysteine-rich Receptor-like Kinases (CRKs), which have been suggested to play important roles in the regulation of pathogen defence and programmed cell death. Despite the vast number of RLKs present in plants, however, only a few of them have been functionally characterized.ResultsWe examined the transcriptional regulation of all Arabidopsis CRKs by ozone (O3), high light and pathogen/elicitor treatment - conditions known to induce the production of reactive oxygen species (ROS) in various subcellular compartments. Several CRKs were transcriptionally induced by exposure to O3 but not by light stress. O3 induces an extracellular oxidative burst, whilst light stress leads to ROS production in chloroplasts. Analysis of publicly available microarray data revealed that the transcriptional responses of the CRKs to O3 were very similar to responses to microbes or pathogen-associated molecular patterns (PAMPs). Several mutants altered in hormone biosynthesis or signalling showed changes in basal and O3-induced transcriptional responses.ConclusionsCombining expression analysis from multiple treatments with mutants altered in hormone biosynthesis or signalling suggest a model in which O3 and salicylic acid (SA) activate separate signaling pathways that exhibit negative crosstalk. Although O3 is classified as an abiotic stress to plants, transcriptional profiling of CRKs showed strong similarities between the O3 and biotic stress responses.


Biochimica et Biophysica Acta | 2008

Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light

Mikko Tikkanen; Markus Nurmi; Saijaliisa Kangasjärvi; Eva-Mari Aro

Phosphorylation of photosystem II (PSII) reaction center protein D1 has been hypothesised to function as a signal for the migration of photodamaged PSII core complex from grana membranes to stroma lamellae for concerted degradation and replacement of the photodamaged D1 protein. Here, by using the mutants with impaired capacity (stn8) or complete lack (stn7 stn8) in phosphorylation of PSII core proteins, the role of phosphorylation in PSII photodamage and repair was investigated. We show that the lack of PSII core protein phosphorylation disturbs the disassembly of PSII supercomplexes at high light, which is a prerequisite for efficient migration of damaged PSII complexes from grana to stroma lamellae for repair. This results in accumulation of photodamaged PSII complexes, which in turn results, upon prolonged exposure to high light (HL), in general oxidative damage of photosynthetic proteins in the thylakoid membrane.


Biochemical Journal | 2008

Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses.

Saijaliisa Kangasjärvi; Anna Lepistö; Kati Hännikäinen; Mirva Piippo; Eeva-Maria Luomala; Eva-Mari Aro; Eevi Rintamäki

Photosynthetic light reactions comprise a significant source of hydrogen peroxide (H(2)O(2)) in illuminated leaves. APXs (ascorbate peroxidases) reduce H(2)O(2) to water and play an important role in the antioxidant system of plants. In the present study we addressed the significance of chloroplast APXs in stress tolerance and signalling in Arabidopsis thaliana. To this end, T-DNA (transfer DNA) insertion mutants tapx, sapx and tapx sapx, lacking the tAPX (thylakoid-bound APX), sAPX (stromal APX) or both respectively, were characterized. Photo-oxidative stress during germination led to bleaching of chloroplasts in sapx single-mutant and particularly in the tapx sapx double-mutant plants, whereas the greening process of wild-type and tapx plants was only partially impaired. Mature leaves of tapx sapx double mutants were also susceptible to short-term photo-oxidative stress induced by high light or methyl viologen treatments. After a 2-week acclimation period under high light or under low temperature, none of the mutants exhibited enhanced stress symptoms. Immunoblot analysis revealed that high-light-stress-acclimated tapx sapx double mutants compensated for the absence of tAPX and sAPX by increasing the level of 2-cysteine peroxiredoxin. Furthermore, the absence of tAPX and sAPX induced alterations in the transcriptomic profile of tapx sapx double-mutant plants already under quite optimal growth conditions. We conclude that sAPX is particularly important for photoprotection during the early greening process. In mature leaves, tAPX and sAPX are functionally redundant, and crucial upon sudden onset of oxidative stress. Moreover, chloroplast APXs contribute to chloroplast retrograde signalling pathways upon slight fluctuations in the accumulation of H(2)O(2) in chloroplasts.


Plant Physiology | 2009

Chloroplast NADPH-Thioredoxin Reductase Interacts with Photoperiodic Development in Arabidopsis

Anna Lepistö; Saijaliisa Kangasjärvi; Eeva-Maria Luomala; Günter Brader; Nina Sipari; Mika Keränen; Markku Keinänen; Eevi Rintamäki

Chloroplast NADPH-thioredoxin reductase (NTRC) belongs to the thioredoxin systems that control crucial metabolic and regulatory pathways in plants. Here, by characterization of T-DNA insertion lines of NTRC gene, we uncover a novel connection between chloroplast thiol redox regulation and the control of photoperiodic growth in Arabidopsis (Arabidopsis thaliana). Transcript and metabolite profiling revealed severe developmental and metabolic defects in ntrc plants grown under a short 8-h light period. Besides reduced chlorophyll and anthocyanin contents, ntrc plants showed alterations in the levels of amino acids and auxin. Furthermore, a low carbon assimilation rate of ntrc leaves was associated with enhanced transpiration and photorespiration. All of these characteristics of ntrc were less severe when plants were grown under a long 16-h photoperiod. Transcript profiling revealed that the mutant phenotypes of ntrc were accompanied by differential expression of genes involved in stomatal development, chlorophyll biosynthesis, chloroplast biogenesis, and circadian clock-linked light perception systems in ntrc plants. We propose that NTRC regulates several key processes, including chlorophyll biosynthesis and the shikimate pathway, in chloroplasts. In the absence of NTRC, imbalanced metabolic activities presumably modulate the chloroplast retrograde signals, leading to altered expression of nuclear genes and, ultimately, to the formation of the pleiotrophic phenotypes in ntrc mutant plants.


Plant Physiology | 2012

Steady-State Phosphorylation of Light-Harvesting Complex II Proteins Preserves Photosystem I under Fluctuating White Light

Michele Grieco; Mikko Tikkanen; Virpi Paakkarinen; Saijaliisa Kangasjärvi; Eva-Mari Aro

According to the “state transitions” theory, the light-harvesting complex II (LHCII) phosphorylation in plant chloroplasts is essential to adjust the relative absorption cross section of photosystem II (PSII) and PSI upon changes in light quality. The role of LHCII phosphorylation upon changes in light intensity is less thoroughly investigated, particularly when changes in light intensity are too fast to allow the phosphorylation/dephosphorylation processes to occur. Here, we demonstrate that the Arabidopsis (Arabidopsis thaliana) stn7 (for state transition7) mutant, devoid of the STN7 kinase and LHCII phosphorylation, shows a growth penalty only under fluctuating white light due to a low amount of PSI. Under constant growth light conditions, stn7 acquires chloroplast redox homeostasis by increasing the relative amount of PSI centers. Thus, in plant chloroplasts, the steady-state LHCII phosphorylation plays a major role in preserving PSI upon rapid fluctuations in white light intensity. Such protection of PSI results from LHCII phosphorylation-dependent equal distribution of excitation energy to both PSII and PSI from the shared LHCII antenna and occurs in cooperation with nonphotochemical quenching and the proton gradient regulation5-dependent control of electron flow, which are likewise strictly regulated by white light intensity. LHCII phosphorylation is concluded to function both as a stabilizer (in time scales of seconds to minutes) and a dynamic regulator (in time scales from tens of minutes to hours and days) of redox homeostasis in chloroplasts, subject to modifications by both environmental and metabolic cues. Exceeding the capacity of LHCII phosphorylation/dephosphorylation to balance the distribution of excitation energy between PSII and PSI results in readjustment of photosystem stoichiometry.


Journal of Experimental Botany | 2012

Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase

Inga Hebbelmann; Jennifer Selinski; Corinna Wehmeyer; Tatjana Goss; Ingo Voss; Paula Mulo; Saijaliisa Kangasjärvi; Eva-Mari Aro; Marie-Luise Oelze; Karl-Josef Dietz; Adriano Nunes-Nesi; Phuc Thi Do; Alisdair R. Fernie; Sai Krishna Talla; Agepati S. Raghavendra; Vera Linke; Renate Scheibe

The nuclear-encoded chloroplast NADP-dependent malate dehydrogenase (NADP-MDH) is a key enzyme controlling the malate valve, to allow the indirect export of reducing equivalents. Arabidopsis thaliana (L.) Heynh. T-DNA insertion mutants of NADP-MDH were used to assess the role of the light-activated NADP-MDH in a typical C3 plant. Surprisingly, even when exposed to high-light conditions in short days, nadp-mdh knockout mutants were phenotypically indistinguishable from the wild type. The photosynthetic performance and typical antioxidative systems, such as the Beck–Halliwell–Asada pathway, were barely affected in the mutants in response to high-light treatment. The reactive oxygen species levels remained low, indicating the apparent absence of oxidative stress, in the mutants. Further analysis revealed a novel combination of compensatory mechanisms in order to maintain redox homeostasis in the nadp-mdh plants under high-light conditions, particularly an increase in the NTRC/2-Cys peroxiredoxin (Prx) system in chloroplasts. There were indications of adjustments in extra-chloroplastic components of photorespiration and proline levels, which all could dissipate excess reducing equivalents, sustain photosynthesis, and prevent photoinhibition in nadp-mdh knockout plants. Such metabolic flexibility suggests that the malate valve acts in concert with other NADPH-consuming reactions to maintain a balanced redox state during photosynthesis under high-light stress in wild-type plants.


Plant Cell and Environment | 2008

Complex phenotypic profiles leading to ozone sensitivity in Arabidopsis thaliana mutants

Kirk Overmyer; Hannes Kollist; Hannele Tuominen; Christian Betz; Christian Langebartels; Gunnar Wingsle; Saijaliisa Kangasjärvi; Günter Brader; Phil Mullineaux; Jaakko Kangasjärvi

Genetically tractable model plants offer the possibility of defining the plant O(3) response at the molecular level. To this end, we have isolated a collection of ozone (O(3))-sensitive mutants of Arabidopsis thaliana. Mutant phenotypes and genetics were characterized. Additionally, parameters associated with O(3) sensitivity were analysed, including stomatal conductance, sensitivity to and accumulation of reactive oxygen species, antioxidants, stress gene-expression and the accumulation of stress hormones. Each mutant has a unique phenotypic profile, with O(3) sensitivity caused by a unique set of alterations in these systems. O(3) sensitivity in these mutants is not caused by gross deficiencies in the antioxidant pathways tested here. The rcd3 mutant exhibits misregulated stomata. All mutants exhibited changes in stress hormones consistent with the known hormonal roles in defence and cell death regulation. One mutant, dubbed re-8, is an allele of the classic leaf development mutant reticulata and exhibits phenotypes dependent on light conditions. This study shows that O(3) sensitivity can be determined by deficiencies in multiple interacting plant systems and provides genetic evidence linking these systems.


Antioxidants & Redox Signaling | 2013

Apoplastic and chloroplastic redox signaling networks in plant stress responses.

Maija Sierla; Moona Rahikainen; Jarkko Salojärvi; Jaakko Kangasjärvi; Saijaliisa Kangasjärvi

SIGNIFICANCE Interplay among apoplastic and chloroplastic redox signaling networks is emerging as a key mechanism in plant stress responses. RECENT ADVANCES Recent research has revealed components involved in apoplastic and chloroplastic redox signaling. Also, the sequence of events from stress perception, activation of apoplastic reactive oxygen species (ROS) burst through NADPH oxidases, cytoplasmic and chloroplastic Ca(2+)-transients, and organellar redox signals to physiological responses is starting to emerge. Moreover, a functional overlap between light acclimation and plant immunity in photosynthetically active tissues has been demonstrated. CRITICAL ISSUES Any deviations from the basal cellular redox balance may induce acclimation responses that continuously readjust cellular functions. However, diversion of resources to stress responses may lead to attenuation of growth, and exaggeration of defensive reactions may thus be detrimental to the plant. The ultimate outcome of acclimation responses must therefore be tightly controlled by the redox signaling networks between organellar and apoplastic signaling systems. FUTURE DIRECTIONS Two major questions still remain to be solved: the sensory mechanism for ROS and the components involved in relaying the signals from the apoplast to the chloroplast. A comprehensive view of regulatory networks will facilitate the understanding on how environmental factors affect the production of phytonutrients and biomass in plants. Translation of such information from model plants to crop species will be at the cutting edge of research in the near future. These challenges give a frame for future studies on ROS and redox regulation of stress acclimation in photosynthetic organisms.

Collaboration


Dive into the Saijaliisa Kangasjärvi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge