Saikat Haldar
Council of Scientific and Industrial Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saikat Haldar.
Journal of Biological Chemistry | 2012
Athar Alam; Saikat Haldar; Hirekodathakallu V. Thulasiram; Rahul Kumar; Manish Goyal; Mohd. Shameel Iqbal; Chinmay Pal; Sumanta Dey; Samik Bindu; Souvik Sarkar; Uttam Pal; Nakul C. Maiti; Uday Bandyopadhyay
Background: Macrophage migration inhibitory factor (MIF) is responsible for proinflammatory reactions in many infectious and non-infectious diseases. Results: Epoxyazadiradione, a limonoid, inhibits the tautomerase activity of both human and malarial MIF and prevents MIF-induced proinflammatory reactions. Conclusion: Epoxyazadiradione bears therapeutic potential against MIF-induced proinflammatory reactions. Significance: This novel molecule is a significant addition in the discovery of anti-inflammatory drugs. Macrophage migration inhibitory factor (MIF) is responsible for proinflammatory reactions in various infectious and non-infectious diseases. We have investigated the mechanism of anti-inflammatory activity of epoxyazadiradione, a limonoid purified from neem (Azadirachta indica) fruits, against MIF. Epoxyazadiradione inhibited the tautomerase activity of MIF of both human (huMIF) and malaria parasites (Plasmodium falciparum (PfMIF) and Plasmodium yoelii (PyMIF)) non-competitively in a reversible fashion (Ki, 2.11–5.23 μm). Epoxyazadiradione also significantly inhibited MIF (huMIF, PyMIF, and PfMIF)-mediated proinflammatory activities in RAW 264.7 cells. It prevented MIF-induced macrophage chemotactic migration, NF-κB translocation to the nucleus, up-regulation of inducible nitric-oxide synthase, and nitric oxide production in RAW 264.7 cells. Epoxyazadiradione not only exhibited anti-inflammatory activity in vitro but also in vivo. We tested the anti-inflammatory activity of epoxyazadiradione in vivo after co-administering LPS and MIF in mice to mimic the disease state of sepsis or bacterial infection. Epoxyazadiradione prevented the release of proinflammatory cytokines such as IL-1α, IL-1β, IL-6, and TNF-α when LPS and PyMIF were co-administered to BALB/c mice. The molecular basis of interaction of epoxyazadiradione with MIFs was explored with the help of computational chemistry tools and a biological knowledgebase. Docking simulation indicated that the binding was highly specific and allosteric in nature. The well known MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) inhibited huMIF but not MIF of parasitic origin. In contrast, epoxyazadiradione inhibited both huMIF and plasmodial MIF, thus bearing an immense therapeutic potential against proinflammatory reactions induced by MIF of both malaria parasites and human.
Green Chemistry | 2013
Saikat Haldar; Swati P. Kolet; Hirekodathakallu V. Thulasiram
Basic limonoids carrying a 4,4,8-trimethyl-17-furanylsteroid skeleton are a class of triterpenoids and well-known for their insecticidal as well as a vast array of pharmacological activities. Rare and synthetically challenging 12β- and 17β-hydroxylation was achieved on the basic limonoid skeleton to produce a novel series of hydroxylated limonoids using fungi-mediated biocatalysis. The fungal system belonging to the genera of Mucor efficiently converted azadiradione, epoxyazadiradione, gedunin and their derivatives into corresponding 12β- and/or 17β-hydroxy derivatives. The position and stereochemistry of hydroxylation was determined by rigorous spectroscopic and crystallographic studies. This fungi-mediated stereo- and regio-selective hydroxylation process was highly efficient and mild enough to sustain chemically sensitive functional groups around the basic limonoid skeleton. Modifications of specific functional groups and variation in biocatalyst were shown to bring selectivity among 12β- or 17β-hydroxylation.
PLOS ONE | 2015
Sudha Ponnusamy; Saikat Haldar; Fayaj A. Mulani; Smita Zinjarde; Hirekodathakallu V. Thulasiram; Ameeta RaviKumar
Human pancreatic α-amylase (HPA) inhibitors offer an effective strategy to lower postprandial hyperglycemia via control of starch breakdown. Limonoids from Azadirachta indica known for their therapeutic potential were screened for pancreatic α-amylase inhibition, a known anti-diabetic target. Studies were carried out to reveal their mode of action so as to justify their hypoglycemic potential. Of the nine limonoids isolated/semi-synthesized from A.indica and screened for α-amylase inhibition, azadiradione and exhibited potential inhibition with an IC50 value of 74.17 and 68.38 μM, respectively against HPA under in vitro conditions. Further screening on AR42J α-amylase secretory cell line for cytotoxicity and bioactivity revealed that azadiradione and gedunin exhibited cytotoxicity with IC50 of 11.1 and 13.4μM. Maximal secreted α-amylase inhibition of 41.8% and 53.4% was seen at 3.5 and 3.3μM, respectively. Michaelis-Menten kinetics suggested a mixed mode of inhibition with maltopentaose (K i 42.2, 18.6 μM) and starch (K i ′ 75.8, 37.4 μM) as substrate with a stiochiometry of 1:1 for both azadiradione and gedunin, respectively. The molecular docking simulation indicated plausible π-alkyl and alkyl-alkyl interactions between the aromatic amino acids and inhibitors. Fluorescence and CD confirmed the involvement of tryptophan and tyrosine in ligand binding to HPA. Thermodynamic parameters suggested that binding is enthalpically and entropically driven with ΔG° of -21.25 kJ mol-1 and -21.16 kJ mol-1 for azadiradione and gedunin, respectively. Thus, the limonoids azadiradione and gedunin could bind and inactivate HPA (anti-diabetic target) and may prove to be lead drug candidates to reduce/control post-prandial hyperglycemia.
Analytical Methods | 2013
Saikat Haldar; Prasad Phapale; Swati P. Kolet; Hirekodathakallu V. Thulasiram
Major basic limonoids from Neem fruits such as azadirone, epoxyazadiradione and azadiradione were isolated in preparative scale using an automated and rapid medium pressure liquid chromatography (MPLC)-based protocol. They were individually quantified using HPLC. An LC-ESI-MS/MS-based rapid identification technique was developed for the high-throughput screening of these limonoids in phytochemical extracts.
Journal of Chromatography A | 2014
Saikat Haldar; Fayaj A. Mulani; Thiagarayaselvam Aarthy; Devdutta S. Dandekar; Hirekodathakallu V. Thulasiram
C-seco triterpenoids are widely bioactive class of natural products with high structural complexity and diversity. The preparative isolation of these molecules with high purity is greatly desirable, although restricted due to the complexity of natural extracts. In this article we have demonstrated a Medium Pressure Liquid Chromatography (MPLC) based protocol for the isolation of eight major C-seco triterpenoids of salannin skeleton from Neem (Azadirachta indica) oil. Successive application of normal phase pre-packed silica-gel columns for the fractionation followed by reverse phase in automated MPLC system expedited the process and furnished highly pure metabolites. Furthermore, eight isolated triterpenoids along with five semi-synthesized derivatives were characterized using ultra performance liquid chromatography-electrospray ionization-quadrupole/orbitrap-MS/MS spectrometry as a rapid and sensitive identification technique. The structure-fragment relationships were established on the basis of plausible mechanistic pathway for the generation of daughter ions. The MS/MS spectral information of the triterpenoids was further utilized for the identification of studied molecules in the complex extract of stem and bark tissues from Neem.
Steroids | 2013
Swati P. Kolet; Siddiqui Niloferjahan; Saikat Haldar; Rajesh G. Gonnade; Hirekodathakallu V. Thulasiram
Biotransformation of steroids with 4-ene-3-one functionality such as progesterone (I), testosterone (II), 17α-methyltestosterone (III), 4-androstene-3,17-dione (IV) and 19-nortestosterone (V) were studied by using a fungal system belonging to the genera of Mucor (M881). The fungal system efficiently and quantitatively converted these steroids in regio- and stereo-selective manner into corresponding 6β,11α-dihydroxy compounds. Time course experiments suggested that the transformation was initiated by hydroxylation at 6β- or 11α-(10β-hydroxy in case of V) to form monohydroxy derivatives which upon prolonged incubation were converted into corresponding 6β,11α-dihydroxy derivatives. The fermentation studies carried out using 5L table-top fermentor with substrates (I and II) clearly indicates that 6β,11α-dihydroxy derivatives of steroids with 4-ene-3-one functionality can be produced in large scale by using M881.
BMC Plant Biology | 2015
Avinash Pandreka; Devdutta S. Dandekar; Saikat Haldar; Vairagkar Uttara; Shinde G. Vijayshree; Fayaj A. Mulani; Thiagarayaselvam Aarthy; Hirekodathakallu V. Thulasiram
BackgroundNeem tree (Azadirachta indica) is one of the richest sources of skeletally diverse triterpenoids and they are well-known for their broad-spectrum pharmacological and insecticidal properties. However, the abundance of Neem triterpenoids varies among the tissues. Here, we delineate quantitative profiling of fifteen major triterpenoids across various tissues including developmental stages of kernel and pericarp, flower, leaf, stem and bark using UPLC-ESI(+)-HRMS based profiling. Transcriptome analysis was used to identify the initial genes involved in isoprenoid biosynthesis. Based on transcriptome analysis, two short-chain prenyltransferases and squalene synthase (AiSQS) were cloned and functionally characterized.ResultsQuantitative profiling revealed differential abundance of both total and individual triterpenoid content across various tissues. RNA from tissues with high triterpenoid content (fruit, flower and leaf) were pooled to generate 79.08 million paired-end reads using Illumina GA ΙΙ platform. 41,140 transcripts were generated by d e novo assembly. Transcriptome annotation led to the identification of the putative genes involved in isoprenoid biosynthesis. Two short-chain prenyltransferases, geranyl diphosphate synthase (AiGDS) and farnesyl diphosphate synthase (AiFDS) and squalene synthase (AiSQS) were cloned and functionally characterized using transcriptome data. RT-PCR studies indicated five-fold and ten-fold higher relative expression level of AiSQS in fruits as compared to leaves and flowers, respectively.ConclusionsTriterpenoid profiling indicated that there is tissue specific variation in their abundance. The mature seed kernel and initial stages of pericarp were found to contain the highest amount of limonoids. Furthermore, a wide diversity of triterpenoids, especially C-seco triterpenoids were observed in kernel as compared to the other tissues. Pericarp, flower and leaf contained mainly ring-intact triterpenoids. The initial genes such as AiGDS, AiFDS and AiSQS involved in the isoprenoids biosynthesis have been functionally characterized. The expression levels of AiFDS and AiSQS were found to be in correlation with the total triterpenoid content in individual tissues.
Steroids | 2014
Swati P. Kolet; Saikat Haldar; Siddiqui Niloferjahan; Hirekodathakallu V. Thulasiram
Transformation of testosterone and progesterone into synthetically challenging 14α-hydroxy derivatives was achieved by using fungal strain Mucor hiemalis. Prolonged incubation led to the formation of corresponding 6β/7α,14α-dihydroxy metabolites. The position and stereochemistry of newly introduced hydroxyl group was determined by detailed spectroscopic analyses. The time course experiment indicated that fungal strain initiated transformation by hydroxylation at 14α-position followed by at 6β- or 7α-positions. Studies using cell-free extracts suggest that the 14α-hydroxylase activity is NADPH dependent and belongs to the cytochrome P450 family.
Bioorganic & Medicinal Chemistry Letters | 2016
Priyanka Kushwaha; Vikram Khedgikar; Saikat Haldar; Jyoti Gautam; Fayaj A. Mulani; Hirekodathakallu V. Thulasiram; Ritu Trivedi
Terpenoids were isolated using chromatographic purification through solvent purification technique and identified as Azadirone (1), Epoxyazadiradione (2) Azadiradione (3) Gedunin (4) Nimbin (5) Salannin (6) Azadirachtin A (7) and Azadirachtin B (8) from Azadirachta indica. Out of eight compounds, only three compounds had osteogenic activity and enhanced osteoblast proliferation, differentiation and mineralization in osteoblast cells. Active compounds stimulated osteogenic genes ALP, RunX-2 and OCN expressions in vitro, but Azadirachtin A had a maximum ability to stimulate osteoblast differentiation and mineralization compared to other two active compounds. For in vivo study, Azadirachtin A injected subcutaneously in pups, which enhanced osteogenic gene expressions and promoted bone formation rate significantly. Here, we conclude that active compounds of Azadirachta indica have osteogenic activity and Azadirachtin A has a beneficial effects on bone.
Journal of Organic Chemistry | 2013
Saikat Haldar; Santosh Kumar; Swati P. Kolet; Harshal S. Patil; Dhiraj Kumar; Gopal C. Kundu; Hirekodathakallu V. Thulasiram
Tagging of small bioactive molecules with a fluorophore is a highly sensitive method to trace their cellular activities through real-time visual information. Here we disclose a 7-nitrobenzo-2-oxa-1,3-diazole (NBD)-based, high-yielding, one-pot labeling protocol for hydroxylated molecules using Yamaguchi coupling as the key reaction. This methodology was successfully applied on several sensitive and complex hydroxylated bioactive compounds including 7-deacetylazadiradione, simvastatin, camptothecin, andrographolide, cinchonine, β-dihydroartemisinin, and azadirachtin A. Further, utility of this protocol was illustrated on the cytotoxic activity of azadiradione derivatives against several cancer cell lines through cell imaging of two qualified fluorescent probes.
Collaboration
Dive into the Saikat Haldar's collaboration.
Hirekodathakallu V. Thulasiram
Council of Scientific and Industrial Research
View shared research outputs