Sajjad Muhammad
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sajjad Muhammad.
The Journal of Neuroscience | 2008
Sajjad Muhammad; Waleed Barakat; Stoyan Stoyanov; Sasidhar Murikinati; Huan Yang; Kevin J. Tracey; Martin Bendszus; Grazisa Rossetti; Peter P. Nawroth; Angelika Bierhaus; Markus Schwaninger
In ischemic stroke, the necrotic core is surrounded by a zone of inflammation, in which delayed cell death aggravates the initial insult. Here, we provide evidence that the receptor for advanced glycation end products (RAGE) functions as a sensor of necrotic cell death and contributes to inflammation and ischemic brain damage. The RAGE ligand high mobility group box 1 (HMGB1) was elevated in serum of stroke patients and was released from ischemic brain tissue in a mouse model of cerebral ischemia. A neutralizing anti-HMGB1 antibody and HMGB1 box A, an antagonist of HMGB1 at the receptor RAGE, ameliorated ischemic brain damage. Interestingly, genetic RAGE deficiency and the decoy receptor soluble RAGE reduced the infarct size. In vitro, expression of RAGE in (micro)glial cells mediated the toxic effect of HMGB1. Addition of macrophages to neural cultures further enhanced the toxic effect of HMGB1. To test whether immigrant macrophages in the ischemic brain mediate the RAGE effect, we generated chimeric mice by transplanting RAGE−/− bone marrow to wild-type mice. RAGE deficiency in bone marrow-derived cells significantly reduced the infarct size. Thus, HMGB1–RAGE signaling links necrosis with macrophage activation and may provide a target for anti-inflammatory therapy in stroke.
Nature Medicine | 2005
Oliver Herrmann; Bernd Baumann; Rossana De Lorenzi; Sajjad Muhammad; Wen Zhang; Jens Kleesiek; Max Malfertheiner; Martin Köhrmann; Ioana Potrovita; Ira Maegele; Cordian Beyer; James R. Burke; Mazahir T. Hasan; Hermann Bujard; Thomas Wirth; Manolis Pasparakis; Markus Schwaninger
The IκB kinase complex IKK is a central component of the signaling cascade that controls NF-κB–dependent gene transcription. So far, its function in the brain is largely unknown. Here, we show that IKK is activated in a mouse model of stroke. To investigate the function of IKK in brain ischemia we generated mice that contain a targeted deletion of Ikbkb (which encodes IKK2) in mouse neurons and mice that express a dominant inhibitor of IKK in neurons. In both lines, inhibition of IKK activity markedly reduced infarct size. In contrast, constitutive activation of IKK2 enlarged the infarct size. A selective small-molecule inhibitor of IKK mimicked the effect of genetic IKK inhibition in neurons, reducing the infarct volume and cell death in a therapeutic time window of 4.5 h. These data indicate a key function of IKK in ischemic brain damage and suggest a potential role for IKK inhibitors in stroke therapy.
The FASEB Journal | 2010
Sasidhar Murikinati; Eric Jüttler; Timo Keinert; Dirk A. Ridder; Sajjad Muhammad; Zoe Waibler; Catherine Ledent; Andreas Zimmer; Ulrich Kalinke; Markus Schwaninger
Activation of the cannabinoid 2 receptor (CB2) reduces ischemic injury in several organs. However, the mechanisms underlying this protective action are unclear. In a mouse model of ischemic stroke, we show that the CB2 agonist JWH‐133 (1 mg • kg”1 • d”1) decreases the infarct size measured 3 d after onset of ischemia. The neuroprotective effect of JWH‐133 was lost in CB2‐deficient mice, confirming the specificity of JWH‐133. Analysis of bone marrow chimeric mice revealed that bone marrow‐derived cells mediate the CB2 effect on ischemic brain injury. CB2 activation reduced the number of neutrophils in the ischemic brain as shown by FACS analysis and by measuring the levels of the neutrophil marker enzyme myeloperoxidase. Indeed, we found in vitro that CB2 activation inhibits adherence of neutrophils to brain endothelial cells. JWH‐133 (1 µM) also interfered with the migration of neutrophils induced by the endogenous chemokine CXCL2 (30 ng/ml) through activation of the MAP kinase p38. This effect on neutrophils is likely responsible for the neuroprotection mediated by JWH‐133 because JWH‐133 was no longer protective when neutrophils were depleted. In conclusion, our data demonstrate that by activating p38 in neutrophils, CB2 agonists inhibit neutrophil recruitment to the brain and protect against ischemic brain injury.— Murikinati, S., Jüttler, E., Keinert, T., Ridder, D. A., Muhammad, S., Waibler, Z., Ledent, C., Zimmer, A., Kalinke, U., Schwaninger, M. Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J. 24, 788–798 (2010). www.fasebj.org
The Journal of Neuroscience | 2006
Ioana Inta; Stephan Paxian; Ira Maegele; Wen Zhang; Marina Pizzi; PierFranco Spano; Ilenia Sarnico; Sajjad Muhammad; Oliver Herrmann; Dragos Inta; Bernd Baumann; Hsiou Chi Liou; Roland M. Schmid; Markus Schwaninger
The transcription factor nuclear factor κB (NF-κB) is well known for its antiapoptotic action. However, in some disorders, such as cerebral ischemia, a proapoptotic function of NF-κB has been demonstrated. To analyze which subunit of NF-κB is functional in cerebral ischemia, we induced focal cerebral ischemia in mice with a germline deletion of the p52 or c-Rel gene or with a conditional deletion of RelA in the brain. Only RelA deficiency reduced infarct size. Interestingly, expression of the proapoptotic BH3 (Bcl-2 homology domain 3)-only genes Bim and Noxa in cerebral ischemia depended on RelA and the upstream kinase IKK (IκB kinase). RelA stimulated Bim and Noxa gene transcription in primary cortical neurons and bound to the promoter of both genes. Thus, the deleterious function in cerebral ischemia is specific for the NF-κB subunit RelA and may be mediated through Bim and Noxa.
Nature Communications | 2014
Mahbubur Rahman; Sajjad Muhammad; Mahtab A. Khan; Hui Chen; Dirk A. Ridder; Helge Müller-Fielitz; Barbora Pokorná; Tillman Vollbrandt; Ines Stölting; Roger Nadrowitz; Jürgen G. Okun; Stefan Offermanns; Markus Schwaninger
The ketone body β-hydroxybutyrate (BHB) is an endogenous factor protecting against stroke and neurodegenerative diseases, but its mode of action is unclear. Here we show in a stroke model that the hydroxy-carboxylic acid receptor 2 (HCA2, GPR109A) is required for the neuroprotective effect of BHB and a ketogenic diet, as this effect is lost in Hca2(-/-) mice. We further demonstrate that nicotinic acid, a clinically used HCA2 agonist, reduces infarct size via a HCA2-mediated mechanism, and that noninflammatory Ly-6C(Lo) monocytes and/or macrophages infiltrating the ischemic brain also express HCA2. Using cell ablation and chimeric mice, we demonstrate that HCA2 on monocytes and/or macrophages is required for the protective effect of nicotinic acid. The activation of HCA2 induces a neuroprotective phenotype of monocytes and/or macrophages that depends on PGD2 production by COX1 and the haematopoietic PGD2 synthase. Our data suggest that HCA2 activation by dietary or pharmacological means instructs Ly-6C(Lo) monocytes and/or macrophages to deliver a neuroprotective signal to the brain.
Journal of Cerebral Blood Flow and Metabolism | 2010
Joachim G Elzer; Sajjad Muhammad; Tim Wintermantel; Anne Régnier-Vigouroux; Jochen Ludwig; Günther Schütz; Markus Schwaninger
17β-Estradiol (E2) was shown to exert neuroprotective effects both in in vitro and in vivo models of stroke. Although these effects of E2 are known to require estrogen receptor-α (ERα), the cellular target of estrogen-mediated neuroprotection remains unknown. Using cell type-specific ER mutant mice in an in vivo model of stroke, we specifically investigated the role of ERα in neuronal cells versus its role in the microglia in the mediation of neuroprotection by estrogens. We generated and analyzed two different tissue-specific knockout mouse lines lacking ERα either in cells of myeloid lineage, including microglia, or in the neurons of the forebrain. Both E2-treated and E2-untreated mutant and control mice were subjected to a permanent middle cerebral artery occlusion for 48 h, and the infarct volume was quantified. Although the infarct volume of E2-treated female myeloid-specific ERα knockout mice was similar to that of E2-treated control mice, both male and female neuron-specific ERα mutant mice had larger infarcts than did control mice after E2 treatment. We conclude that neuronal ERα in female and male mice mediates neuroprotective estrogen effects in an in vivo mouse model of stroke, whereas microglial ERα is dispensable.
Stroke | 2011
Sajjad Muhammad; Emanuel Haasbach; Maria Kotchourko; Anne Strigli; Antje Krenz; Dirk A. Ridder; Annette B. Vogel; Hugo H. Marti; Yousef Al-Abed; Oliver Planz; Markus Schwaninger
Background and Purpose— Stroke is triggered by several risk factors, including influenza and other respiratory tract infections. However, it is unknown how and in which way influenza infection affects stroke outcome. Methods— We infected mice intranasally with human influenza A (H1N1) virus and occluded the middle cerebral artery to induce ischemic strokes. Infarct volume and intracerebral hemorrhage were determined by histology. To evaluate the integrity of the blood–brain barrier and inflammation, we measured various cytokines in vivo and in vitro and performed immunohistochemistry of leukocyte markers, collagen IV, immunoglobulins, and matrix metalloproteinase-9. Results— Influenza virus infection increased infarct size. Whereas changes in cardiovascular parameters did not explain this effect, we found evidence for an inflammatory mechanism. In influenza virus infection, the respiratory tract released cytokines into the blood, such as RANTES that induced macrophage inflammatory protein-2 and other inflammatory mediators in the ischemic brain. In infected mice, there was an increased number of neutrophils expressing the matrix metalloproteinase-9 in the ischemic brain. This was accompanied by severe disruption of the blood–brain barrier and an increased rate of intracerebral hemorrhages after tissue plasminogen activator treatment. To investigate the role of cytokines, we blocked cytokine release by using GTS-21, a selective agonist of the &agr;7 nicotinic acetylcholine receptor. GTS-21 ameliorated ischemic brain damage and improved survival. Conclusions— Influenza virus infection triggers a cytokine cascade that aggravates ischemic brain damage and increases the risk of intracerebral hemorrhage after tissue plasminogen activator treatment. Blockade of cytokine production by &agr;7 nicotinic acetylcholine receptor agonists is a novel therapeutic option to treat stroke in a proinflammatory context.
Journal of Alzheimer's Disease | 2009
Sajjad Muhammad; Angelika Bierhaus; Markus Schwaninger
A morphological hallmark of Alzheimers disease (AD) is the deposition of amyloid-beta peptide in plaques and along blood vessels. As several lines of evidence suggest that vascular dysfunction contributes to AD, the pathophysiology of diabetic vasculopathy and stroke may cast light on the vascular component of AD. In this review, we compile some recent findings on the role of reactive oxygen species in diabetes-induced vascular dysfunction and the consequent cerebral ischemia and compare them with key findings in AD. Overall, there is compelling evidence that reactive oxygen species play a key role in the pathophysiology of AD. Unfortunately, this insight has not yet led to a new treatment of AD.
Neuroscience | 2010
Sajjad Muhammad; María Isabel Aller; Christiane Maser-Gluth; Markus Schwaninger; William Wisden
We examined the possible protective effect of TASK-1 (TWIK-related acid-sensitive potassium channel-1, kcnk3) and -3 potassium channels during stroke. TASK-1 and TASK-3, members of the two pore domain (K2P or kcnk) potassium channel family, form hetero or homodimers and help set the resting membrane potential. We used male TASK-1 and TASK-3 knockout mice in a model of focal cerebral ischemia, permanent middle cerebral artery occlusion (pMCAO). Infarct volume was measured 48 h after pMCAO. The TASK-1 knockout brains had larger infarct volumes (P=0.004), and those in TASK-3 knockouts were unchanged. As the TASK-1 gene is expressed in adrenal gland, heart and possibly blood vessels, the higher infarct volumes in the TASK-1 knockout mice could be due to TASK-1 regulating blood vessel tone and hence blood pressure or influencing blood vessel microarchitecture and blood flow rate. Indeed, we found that male TASK-1 knockout mice had reduced blood pressure, likely explaining the increased brain injury seen after pMCAO. Thus to make precise conclusions about how TASK-1 protects neurons, neural- or organ-specific deletions of the gene will be needed. Nevertheless, a consequence of having TASK-1 channels expressed (in various non-neuronal tissues and organs) is that neuronal damage is lessened when stroke occurs.
Brain Research | 2012
Panagiotis Bargiotas; Sajjad Muhammad; Mahbubur Rahman; Nurith J. Jakob; Raimund Trabold; Elke C. Fuchs; Lothar Schilling; Nikolaus Plesnila; Hannah Monyer; Markus Schwaninger
Cortical spreading depolarization (CSD) promotes the progression of neuronal injury after cerebral ischemia. However, the mechanisms of propagation of postischemic CSD events are still unclear. In this study we characterized the role of the main neuronal gap junction protein connexin 36 (Cx36) in generating postischemic CSDs. In Cx36-deficient mice and controls we occluded the distal middle cerebral artery. To detect CSD events we recorded the direct current and laser Doppler flow. In addition, locomotor function and the infarct size were determined. Cx36-deficient mice had significantly fewer and shorter CSD events than wild-type controls. Additionally, Cx36 deletion is neuroprotective, leading to a better functional outcome and decreased infarct size after ischemia. These results suggest a detrimental role for Cx36 after ischemia, possibly by promoting CSD.