Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sakkubai Naidu is active.

Publication


Featured researches published by Sakkubai Naidu.


American Journal of Human Genetics | 1999

Rett Syndrome and Beyond: Recurrent Spontaneous and Familial MECP2 Mutations at CpG Hotspots

Mimi Wan; Stephen Sung Jae Lee; Xianyu Zhang; Isa Houwink-Manville; Hae Ri Song; Ruthie E. Amir; Sarojini Budden; Sakkubai Naidu; José Luiz Pinto Pereira; Ivan F.M. Lo; Huda Y. Zoghbi; N. Carolyn Schanen; Uta Francke

Rett syndrome (RTT) is a neurodevelopmental disorder characterized by loss of acquired skills after a period of normal development in infant girls. The responsible gene, encoding methyl-CpG binding protein 2 (MeCP2), was recently discovered. Here we explore the spectrum of phenotypes resulting from MECP2 mutations. Both nonsense (R168X and R255X) and missense (R106W and R306C) mutations have been found, with multiple recurrences. R168X mutations were identified in six unrelated sporadic cases, as well as in two affected sisters and their normal mother. The missense mutations were de novo and affect conserved domains of MeCP2. All of the nucleotide substitutions involve C-->T transitions at CpG hotspots. A single nucleotide deletion, at codon 137, that creates a L138X stop codon within the methyl-binding domain was found in an individual with features of RTT and incontinentia pigmenti. An 806delG deletion causing a V288X stop in the transcription-repression domain was identified in a woman with motor-coordination problems, mild learning disability, and skewed X inactivation; in her sister and daughter, who were affected with classic RTT; and in her hemizygous son, who died from congenital encephalopathy. Thus, some males with RTT-causing MECP2 mutations may survive to birth, and female heterozygotes with favorably skewed X-inactivation patterns may have little or no involvement. Therefore, MECP2 mutations are not limited to RTT and may be implicated in a much broader phenotypic spectrum.


Nature Genetics | 2001

Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter

P.A.J. Leegwater; Gerre Vermeulen; Andrea A.M. Könst; Sakkubai Naidu; Joyce Mulders; Allerdien Visser; Paula Kersbergen; Dragosh Mobach; Dafna Fonds; Carola G.M. van Berkel; Richard J.L.F. Lemmers; Rune R. Frants; Cees B.M. Oudejans; Ruud B.H. Schutgens; Jan C. Pronk; Marjo S. van der Knaap

Leukoencephalopathy with vanishing white matter (VWM) is an inherited brain disease that occurs mainly in children. The course is chronic-progressive with additional episodes of rapid deterioration following febrile infection or minor head trauma. We have identified mutations in EIF2B5 and EIF2B2, encoding the ɛ- and β-subunits of the translation initiation factor eIF2B and located on chromosomes 3q27 and 14q24, respectively, as causing VWM. We found 16 different mutations in EIF2B5 in 29 patients from 23 families. We also found two distantly related individuals who were homozygous with respect to a missense mutation in EIF2B2, affecting a conserved amino acid. Three other patients also had mutations in EIF2B2. As eIF2B has an essential role in the regulation of translation under different conditions, including stress, this may explain the rapid deterioration of people with VWM under stress. Mutant translation initiation factors have not previously been implicated in disease.


Annals of Neurology | 2002

Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter

Marjo S. van der Knaap; P.A.J. Leegwater; Andrea A.M. Könst; Allerdien Visser; Sakkubai Naidu; Cees B.M. Oudejans; Ruud B.H. Schutgens; Jan C. Pronk

Leukoencephalopathy with vanishing white matter is a recently defined autosomal recessive disorder. The course is chronic progressive with additional episodes of rapid deterioration, provoked by fever and minor head trauma. A previous study showed that mutations in the genes encoding the ε‐ or the β‐subunit of the eukaryotic translation initiation factor eIF2B, a complex consisting of five subunits, cause the disease in most patients. Seven unsolved patients remained. The unsolved patients were investigated by mutation analysis of the genes encoding the α‐, γ‐, and δ‐subunit of eIF2B and the gene encoding the α‐subunit of eIF2, because phosphorylation of this latter subunit regulates eIF2B activity. Mutations were found in the genes encoding the α‐ (1 patient), γ‐ (2 patients), and δ‐subunits (2 patients) of eIF2B, but no mutations were found in the gene encoding the α‐subunit of eIF2. In 2, both less typical patients, no mutations were found. Mutations in all five genes eIF2B subunit genes can cause VWM. eIF2B is essential for the initiation of translation of RNA into protein and is involved in regulation of the process, especially under circumstances of stress, such as fever. A defect in eIF2B may explain the sensitivity to stress factors in vanishing white matter patients.


Neurology | 2001

MeCP2 mutations in children with and without the phenotype of Rett syndrome

Kristen C. Hoffbuhr; Joe Devaney; B. LaFleur; N. Sirianni; C. Scacheri; James M. Giron; J. Schuette; J. Innis; Michael A. Marino; Michel Philippart; V. Narayanan; R. Umansky; D. Kronn; Eric P. Hoffman; Sakkubai Naidu

Background: Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked methyl CpG binding protein 2 (MeCP2) gene. Methods: One hundred sixteen patients with classical and atypical RTT were studied for mutations of the MeCP2 gene by using DHPLC and direct sequencing. Results:Causative mutations in the MeCP2 gene were identified in 63% of patients, representing a total of 30 different mutations. Mutations were identified in 72% of patients with classical RTT and one third of atypical cases studied (8 of 25). The authors found 17 novel mutations, including a complex gene rearrangement found in one individual involving two deletions and a duplication. The duplication was identical to a region within the 3′ untranslated region (UTR), and represents the first report of involvement of the 3′ UTR in RTT. The authors also report the identification of MeCP2 mutations in two males; a Klinefelter’s male with classic RTT (T158M) and a hemizygous male infant with a Xq27-28 inversion and a novel 32 bp frameshift deletion [1154(del32)]. Studies examining the relationship between mutation type, X-inactivation status, and severity of clinical presentation found significant differences in clinical presentation between different types of mutations. Mutations in the amino-terminus were significantly correlated with a more severe clinical presentation compared with mutations closer to the carboxyl-terminus of MeCP2. Skewed X-inactivation patterns were found in two asymptomatic carriers of MeCP2 mutations and six girls diagnosed with either atypical or classical RTT. Conclusion:This patient series confirms the high frequency of MeCP2gene mutations causative of RTT in females and provides data concerning the molecular basis for clinical variability (mutation type and position and X-inactivation patterns).


The Journal of Pediatrics | 1995

Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups

Ann B. Moser; Magnhild Rasmussen; Sakkubai Naidu; Paul A. Watkins; Martina McGuinness; Amiya K. Hajra; Grace L. Chen; Gerald V. Raymond; Angela Liu; Donald Gordon; Karen Garnaas; David S. Walton; Ola Skjeldal; Mary Anne Guggenheim; Laird G. Jackson; Ellen Roy Elias; Hugo W. Moser

OBJECTIVE To use the technique of complementation analysis to help define genotype and classify patients with clinical manifestations consistent with those of the disorders of peroxisome assembly, namely the Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), infantile Refsum disease (IRD), and rhizomelic chondrodysplasia punctata (RCDP). STUDY DESIGN Clinical findings, peroxisomal function, and complementation groups were examined in 173 patients with the clinical manifestations of these disorders. RESULTS In 37 patients (21%), peroxisome assembly was intact and isolated deficiencies of one of five peroxisomal enzymes involved in the beta-oxidation of fatty acids or plasmalogen biosynthesis were demonstrated. Ten complementation groups were identified among 93 patients (54%) with impaired peroxisome assembly and one of three phenotypes (ZS, NALD, or IRD) without correlation between complementation group and phenotype. Forty-three patients (25%) had impaired peroxisome assembly associated with the RCDP phenotype and belonged to a single complementation group. Of the 173 patients, 10 had unusually mild clinical manifestations, including survival to the fifth decade or deficits limited to congenital cataracts. CONCLUSIONS At least 16 complementation groups, and hence genotypes, are associated with clinical manifestations of disorders of peroxisome assembly. The range of phenotype is wide, and some patients have mild involvement.


Annals of Neurology | 2005

Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease

Rong Li; Anne B. Johnson; Gajja S. Salomons; James E. Goldman; Sakkubai Naidu; Roy A. Quinlan; Bruce Cree; Stephanie Z. Ruyle; Brenda Banwell; Marc d'Hooghe; Joseph R. Siebert; Cristin Rolf; Helen Cox; Alyssa T. Reddy; Luis González Gutiérrez-Solana; Amanda Collins; Roy O. Weller; Albee Messing; Marjo S. van der Knaap; Michael Brenner

Alexander disease is a progressive, usually fatal neurological disorder defined by the widespread and abundant presence in astrocytes of protein aggregates called Rosenthal fibers. The disease most often occurs in infants younger than 2 years and has been labeled a leukodystrophy because of an accompanying severe myelin deficit in the frontal lobes. Later onset forms have also been recognized based on the presence of abundant Rosenthal fibers. In these cases, clinical signs and pathology can be quite different from the infantile form, raising the question whether they share the same underlying cause. Recently, we and others have found pathogenic, de novo missense mutations in the glial fibrillary acidic protein gene in most infantile patients examined and in a few later onset patients. To obtain further information about the role of glial fibrillary acidic protein mutations in Alexander disease, we analyzed 41 new patients and another 3 previously described clinically, including 18 later onset patients. Our results show that dominant missense glial fibrillary acidic protein mutations account for nearly all forms of this disorder. They also significantly expand the catalog of responsible mutations, verify the value of magnetic resonance imaging diagnosis, indicate an unexpected male predominance for the juvenile form, and provide insights into phenotype–genotype relations. Ann Neurol 2005;57:310–326


Neurobiology of Disease | 2001

Gene Expression Profiling in Postmortem Rett Syndrome Brain: Differential Gene Expression and Patient Classification

Carlo Colantuoni; Ok Hee Jeon; Karim Hyder; Alex Chenchik; Anis H. Khimani; Vinodh Narayanan; Eric P. Hoffman; Walter E. Kaufmann; Sakkubai Naidu; Jonathan Pevsner

The identification of mutations in the transcriptional repressor methyl-CpG-binding protein 2 (MECP2) gene in Rett Syndrome (RTT) suggests that an inappropriate release of transcriptional silencing may give rise to RTT neuropathology. Despite this progress, the molecular basis of RTT neuropathogenesis remains unclear. Using multiple cDNA microarray technologies, subtractive hybridization, and conventional biochemistry, we generated comprehensive gene expression profiles of postmortem brain tissue from RTT patients and matched controls. Many glial transcripts involved in known neuropathological mechanisms were found to have increased expression in RTT brain, while decreases were observed in the expression of multiple neuron-specific mRNAs. Dramatic and consistent decreases in transcripts encoding presynaptic markers indicated a specific deficit in presynaptic development. Employing multiple clustering algorithms, it was possible to accurately segregate RTT from control brain tissue samples based solely on gene expression profile. Although previously achieved in cancers, our results constitute the first report of human disease classification using gene expression profiling in a complex tissue source such as brain.


American Journal of Human Genetics | 1998

Rett syndrome: confirmation of X-linked dominant inheritance, and localization of the gene to Xq28.

Nicky Sirianni; Sakkubai Naidu; Joseluiz Pereira; Rui Fernando Pillotto; Eric P. Hoffman

S.N. and E.P.H. are supported by grants from the National Institutes of Health (NIH). N.S. is supported by NIH Biotechnology Training Grant IT32 GM08540 to the University of Pittsburgh. The authors thank Mark Lanasa, for assistance with the X-inactivation studies, and Paco Murillo-Martinez, for help with linkage analyses. E.P.H. is an Established Investigator of the American Heart Association.


Nature Genetics | 2012

Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus

Beverley Anderson; Paul R. Kasher; Josephine Mayer; Marcin Szynkiewicz; Emma M. Jenkinson; Sanjeev Bhaskar; Jill Urquhart; Sarah B. Daly; Jonathan E. Dickerson; James O'Sullivan; Elisabeth Oppliger Leibundgut; Joanne Muter; Ghada M H Abdel-Salem; Riyana Babul-Hirji; Peter Baxter; Andrea Berger; Luisa Bonafé; Janice E Brunstom-Hernandez; Johannes A Buckard; David Chitayat; Wk Chong; Duccio Maria Cordelli; Patrick Ferreira; Joel Victor Fluss; Ewan H. Forrest; Emilio Franzoni; Caterina Garone; Simon Hammans; Gunnar Houge; Imelda Hughes

Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.


Brain & Development | 2001

Guidelines for reporting clinical features in cases with MECP2 mutations

Alison M. Kerr; Yoshiko Nomura; Dawna L. Armstrong; Maria Anvret; Pavel V. Belichenko; Sarojini Budden; Hilary Cass; John Christodoulou; Angus John Clarke; Carolyn Ellaway; Maurizio d'Esposito; Uta Francke; Maj A. Hultén; Peter O.O. Julu; Helen Leonard; Sakkubai Naidu; Carolyn Schanen; Tessa Webb; Ingegerd Witt Engerström; Yushiro Yamashita; Masaya Segawa

An international group recommends that papers relating phenotypes to genotypes involving mutations in the X chromosome gene MECP2 should provide a minimum data set reporting the range of disturbances frequently encountered in Rett Syndrome. A simple scoring system is suggested which will facilitate comparison among the various clinical profiles. Features are described which should prompt screening for MECP2 mutations.

Collaboration


Dive into the Sakkubai Naidu's collaboration.

Top Co-Authors

Avatar

Hugo W. Moser

Kennedy Krieger Institute

View shared research outputs
Top Co-Authors

Avatar

Genila Bibat

Kennedy Krieger Institute

View shared research outputs
Top Co-Authors

Avatar

Michael V. Johnston

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann B. Moser

Kennedy Krieger Institute

View shared research outputs
Top Co-Authors

Avatar

Mary E. Blue

Kennedy Krieger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adeline Vanderver

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Eric P. Hoffman

Children's National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge