Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sakurako Kimura is active.

Publication


Featured researches published by Sakurako Kimura.


Applied Microbiology and Biotechnology | 2008

Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli

Masayuki Inui; Masako Suda; Sakurako Kimura; Kaori Yasuda; Hiroaki Suzuki; Hiroshi Toda; Shogo Yamamoto; Shohei Okino; Nobuaki Suzuki; Hideaki Yukawa

A recombinant butanol pathway composed of Clostridium acetobutylicum ATCC 824 genes, thiL, hbd, crt, bcd-etfB-etfA, and adhe1 (or adhe) coding for acetyl-CoA acetyltransferase (THL), β-hydroxybutyryl-CoA dehydrogenase (HBD), 3-hydroxybutyryl-CoA dehydratase (CRT), butyryl-CoA dehydrogenase (BCD), butyraldehyde dehydrogenase (BYDH), and butanol dehydrogenase (BDH), under the tac promoter control was constructed and was introduced into Escherichia coli. The functional expression of these six enzymes was proved by demonstrating the corresponding enzyme activities using spectrophotometric, high performance liquid chromatography and gas chromatography analyses. The BCD activity, which was not detected in E. coli previously, was shown in the present study by performing the procedure from cell extract preparation to activity measurement under anaerobic condition. Moreover, the etfA and etfB co-expression was found to be essential for the BCD activity. In the case of BYDH activity, the adhe gene product was shown to have higher specificity towards butyryl-CoA compared to the adhe1 product. Butanol production from glucose was achieved by the highly concentrated cells of the butanologenic E. coli strains, BUT1 with adhe1 and BUT2 with adhe, under anaerobic condition, and the BUT1 and BUT2 strains were shown to produce 4 and 16-mM butanol with 6- and 1-mM butyrate as a byproduct, respectively. This study reports the novel butanol production by an aerobically pregrown microorganism possessing the genes of a strict anaerobe, Clostridium acetobutylicum.


Applied and Environmental Microbiology | 2006

Macroscopic Streamer Growths in Acidic, Metal-Rich Mine Waters in North Wales Consist of Novel and Remarkably Simple Bacterial Communities

Kevin B. Hallberg; Kris Coupland; Sakurako Kimura; D. Barrie Johnson

ABSTRACT The microbial composition of acid streamers (macroscopic biofilms) in acidic, metal-rich waters in two locations (an abandoned copper mine and a chalybeate spa) in north Wales was studied using cultivation-based and biomolecular techniques. Known chemolithotrophic and heterotrophic acidophiles were readily isolated from disrupted streamers, but they accounted for only <1 to 7% of the total microorganisms present. Fluorescent in situ hybridization (FISH) revealed that 80 to 90% of the microbes in both types of streamers were β-Proteobacteria. Terminal restriction fragment length polymorphism analysis of the streamers suggested that a single bacterial species was dominant in the copper mine streamers, while two distinct bacteria (one of which was identical to the bacterium found in the copper mine streamers) accounted for about 90% of the streamers in the spa water. 16S rRNA gene clone libraries showed that the β-proteobacterium found in both locations was closely related to a clone detected previously in acid mine drainage in California and that its closest characterized relatives were neutrophilic ammonium oxidizers. Using a modified isolation technique, this bacterium was isolated from the copper mine streamers and shown to be a novel acidophilic autotrophic iron oxidizer. The β-proteobacterium found only in the spa streamers was closely related to the neutrophilic iron oxidizer Gallionella ferruginea. FISH analysis using oligonucleotide probes that targeted the two β-proteobacteria confirmed that the biodiversity of the streamers in both locations was very limited. The microbial compositions of the acid streamers found at the two north Wales sites are very different from the microbial compositions of the previously described acid streamers found at Iron Mountain, California, and the Rio Tinto, Spain.


Biodegradation | 2006

Sulfidogenesis in Low pH (3.8–4.2) Media by a Mixed Population of Acidophilic Bacteria

Sakurako Kimura; Kevin B. Hallberg; D. Barrie Johnson

A defined mixed bacterial culture was established which catalyzed dissimilatory sulfate reduction, using glycerol as electron donor, at pH 3.8–4.2. The bacterial consortium comprised a endospore-forming sulfate reducing bacterium (isolate M1) that had been isolated from acidic sediment in a geothermal area of Montserrat (West Indies) and which had 94% sequence identity (of its 16S rRNA gene) to the Gram-positive neutrophile Desulfosporosinus orientis, and a Gram-negative (non sulfate-reducing) acidophile (isolate PFBC) that shared 99% gene identity with Acidocella aromatica. Whilst M1 was an obligate anaerobe, isolate PFBC, as other Acidocella spp., only grew in pure culture in aerobic media. Analysis of microbial communities, using a combination of total bacterial counts and fluorescent in situ hybridization, confirmed that concurrent growth of both bacteria occurred during sulfidogenesis under strictly anoxic conditions in a pH-controlled fermenter. In pure culture, M1 oxidized glycerol incompletely, producing stoichiometric amounts of acetic acid. In mixed culture with PFBC, however, acetic acid was present only in small concentrations and its occurrence was transient. Since M1 did not oxidize acetic acid, it was inferred that this metabolite was catabolized by Acidocella PFBC which, unlike glycerol, was shown to support the growth of this acidophile under aerobic conditions. In fermenter cultures maintained at pH 3.8–4.2, sulfidogenesis resulted in the removal of soluble zinc (as solid phase ZnS) whilst ferrous iron remained in solution. Potential syntrophic interactions, involving hydrogen transfer between M1 and PFBC, are discussed, as is the potential of sulfidogenesis in acidic liquors for the selective recovery of heavy metals from wastewaters.


Applied and Environmental Microbiology | 2008

System Using Tandem Repeats of the cA Peptidoglycan-Binding Domain from Lactococcus lactis for Display of both N-and C-Terminal Fusions on Cell Surfaces of Lactic Acid Bacteria

Kenji Okano; Qiao Zhang; Sakurako Kimura; Junya Narita; Tsutomu Tanaka; Hideki Fukuda; Akihiko Kondo

ABSTRACT Here, we established a system for displaying heterologous protein to the C terminus of the peptidoglycan-binding domain (cA domain) of AcmA (a major autolysin from Lactococcus lactis). Western blot and flow cytometric analyses revealed that the fusion proteins (cA-AmyA) of the cA domain and α-amylase from Streptococcus bovis 148 (AmyA) are efficiently expressed and successfully displayed on the surfaces of L. lactis cells. AmyA was also displayed on the cell surface while retaining its activity. Moreover, with an increase in the number of cA domains, the quantity of cA-AmyA fusion proteins displayed on the cell surface increased. When three repeats of the cA domain were used as an anchor protein, 82% of α-amylase activity was detected on the cells. The raw starch-degrading activity of AmyA was significantly higher when AmyA was fused to the C terminus of the cA domain than when it was fused to the N terminus. In addition, cA-AmyA fusion proteins were successfully displayed on the cell surfaces of Lactobacillus plantarum and Lactobacillus casei.


Biotechnology Progress | 2006

Quantitative and Dynamic Analyses of G Protein-Coupled Receptor Signaling in Yeast Using Fus1, Enhanced Green Fluorescence Protein (EGFP), and His3 Fusion Protein

Jun Ishii; Shizuka Matsumura; Sakurako Kimura; Kenji Tatematsu; Shun'ichi Kuroda; Hideki Fukuda; Akihiko Kondo

The mechanism of G protein‐coupled receptor (GPCR) signaling in yeasts is similar to that in mammalian cells. Therefore, yeasts can be used in GPCR assays, and several ligand detection systems using a pheromone signaling pathway in yeasts have been developed by employing yeasts with disrupted chromosomal genes that code for proteins producing specific effects. In this study, the construction of yeast strains that can detect ligand binding mediated by interactions between the G protein and GPCR using either fluorescence or auxotrophic selectivity is demonstrated. The strain was constructed by integrating the fusion gene of pheromone‐responsive protein (FUS1), enhanced green fluorescence protein (EGFP), and auxotrophic marker protein (HIS3) into theFUS1 locus. Moreover, the influence of gene disruptions on the yeast signal transduction cascade is closely investigated with respect to both quantitative and dynamic aspects to further develop a high‐throughput screening system for the GPCR assay using yeasts. Yeast strains with a disrupted SST2 gene, which is a member of the RGS (regulator of G protein signaling) family, and a disrupted FAR1 gene, which mediates cell cycle arrest in response to a pheromone, were monitored by measuring their fluorescence and growth rate. This method will be applicable to other comprehensive GPCR ligand screening methods.


Applied Microbiology and Biotechnology | 2006

Improvement of protein production in lactic acid bacteria using 5'-untranslated leader sequence of slpA from Lactobacillus acidophilus. Improvement in protein production using UTLS.

Junya Narita; Saori Ishida; Kenji Okano; Sakurako Kimura; Hideki Fukuda; Akihiko Kondo

The 5′-untranslated leader sequence (UTLS) of the slpA gene from Lactobacillus acidophilus contributes to mRNA stabilization by producing a 5′ stem and loop structure, and a high-level expression system for the lactic acid bacteria was developed using the UTLS in this study. A plasmid, which expresses α-amylase under the control of the ldh promoter, was constructed by integrating the core promoter sequence with the UTLS. The role of the UTLS in increasing the copies of the α-amylase mRNA was proved by measuring α-amylase activity in the culture supernatant and the relative expression of α-amylase mRNA was determined by the quantitative real-time PCR analysis. Moreover, several expression systems were constructed by combining the core promoter sequence with the UTLS or with the partially deleted UTLS and the expression level was evaluated. The use of the UTLS led to the success in improving α-amylase expression in the two strains of Lactobacillus casei and Lactococcus lactis. The current study showed that the improvement in protein production using the UTLS could be applied to the expression system in the lactic acid bacteria.


Applied Microbiology and Biotechnology | 2009

Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector

Yoshiki Tsuchida; Sakurako Kimura; Nobuaki Suzuki; Masayuki Inui; Hideaki Yukawa

A new plasmid pCASE1 was isolated from Gram-positive Corynebacterium casei JCM 12072. It comprised a 2.4-kb nucleotide sequence with three ORFs, two of which were indispensable for autonomous replication in Corynebacterium glutamicum. Homology search identified these two ORFs as repA and repB, areas coding proteins involved in plasmid replication. repA sequence showed high similarity to theta-replicating Escherichia coli ColE2-P9 plasmids and even higher similarity to plasmids derived from Gram-positive bacteria belonging to a subfamily of this ColE2-P9 group. An E. coli–C. glutamicum shuttle vector was constructed with pCASE1 fragment including repA and repB to transform C. glutamicum and showed compatibility with corynebacterial plasmids from different plasmid families. The copy number of the shuttle vector in C. glutamicum was 13 and the vector showed stability for 102 generations with no selective pressure.


Applied Microbiology and Biotechnology | 2010

Characterization of a 24-kb plasmid pCGR2 newly isolated from Corynebacterium glutamicum

Yoshiki Tsuchida; Sakurako Kimura; Nobuaki Suzuki; Masayuki Inui; Hideaki Yukawa

A 24-kb plasmid with 21 open reading frames (ORFs) was newly isolated from Corynebacterium glutamicum ATCC 14997 and named pCGR2. Three of its ORFs were indispensable for stable autonomous replication of pCGR2 in C. glutamicum: in the absence of selective pressure, deletion derivatives of pCGR2 containing the three ORFs showed stability in C. glutamicum for over 50 generations. The first of these ORFs encoded replicase repA whose gene product revealed high amino acid sequence similarity to corresponding gene products of C. glutamicum pCG1-family plasmids in general, and to that of pTET3 plasmid repA in particular. The other two ORFs were located upstream of repA and exhibited high sequence similarity to pTET3 parA and parB, respectively. Interestingly, plasmids based on the pCGR2 were compatible not only with those based on different family plasmids (pBL1, pCASE1) but also with those based on pCG1-family plasmid. Plasmids comprising pCGR2 repA showed a copy number of four in C. glutamicum. The number increased to 240 upon introduction of a mutation within the repA origin of the putative promoter for counter-transcribed RNA. This 60-fold increase in copy number should immensely contribute towards enhanced expression of desired genes in C. glutamicum.


Archives of Microbiology | 2006

Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.: a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium

D. Barrie Johnson; Bethan Stallwood; Sakurako Kimura; Kevin B. Hallberg


Applied Microbiology and Biotechnology | 2007

Improvement in lactic acid production from starch using α-amylase-secreting Lactococcus lactis cells adapted to maltose or starch

Kenji Okano; Sakurako Kimura; Junya Narita; Hideki Fukuda; Akihiko Kondo

Collaboration


Dive into the Sakurako Kimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideaki Yukawa

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masayuki Inui

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Nobuaki Suzuki

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Toda

Toyama Prefectural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge