Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saleh M. Ibrahim is active.

Publication


Featured researches published by Saleh M. Ibrahim.


Cell Research | 2008

MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth

Julia Schultz; Peter Lorenz; Gerd Gross; Saleh M. Ibrahim; Manfred Kunz

A microRNA expression screen was performed analyzing 157 different microRNAs in laser-microdissected tissues from benign melanocytic nevi (n = 10) and primary malignant melanomas (n = 10), using quantitative real-time PCR. Differential expression was found for 72 microRNAs. Members of the let-7 family of microRNAs were significantly downregulated in primary melanomas as compared with benign nevi, suggestive for a possible role of these molecules as tumor suppressors in malignant melanoma. Interestingly, similar findings had been described for lung and colon cancer. Overexpression of let-7b in melanoma cells in vitro downregulated the expression of cyclins D1, D3, and A, and cyclin-dependent kinase (Cdk) 4, all of which had been described to play a role in melanoma development. The effect of let-7b on protein expression was due to targeting of 3′-untranslated regions (3′UTRs) of individual mRNAs, as exemplified by reporter gene analyses for cyclin D1. In line with its downmodulating effects on cell cycle regulators, let-7b inhibited cell cycle progression and anchorage-independent growth of melanoma cells. Taken together, these findings not only point to new regulatory mechanisms of early melanoma development, but also may open avenues for future targeted therapies of this tumor.


Annals of the Rheumatic Diseases | 2007

Rheumatoid Arthritis subtypes identified by genomic profiling of peripheral blood cells: Assignment of a type I interferon signature in a subpopulation of patients

T C T M van der Pouw Kraan; Carla A. Wijbrandts; L G M van Baarsen; A E Voskuyl; François Rustenburg; Saleh M. Ibrahim; Mike Fero; Ben A. C. Dijkmans; P P Tak; Cornelis L. Verweij

Background: Rheumatoid arthritis (RA) is a heterogeneous disease with unknown cause. Aim: To identify peripheral blood (PB) gene expression profiles that may distinguish RA subtypes. Methods: Large-scale expression profiling by cDNA microarrays was performed on PB from 35 patients and 15 healthy individuals. Differential gene expression was analysed by significance analysis of microarrays (SAM), followed by gene ontology analysis of the significant genes. Gene set enrichment analysis was applied to identify pathways relevant to disease. Results: A substantially raised expression of a spectrum of genes involved in immune defence was found in the PB of patients with RA compared with healthy individuals. SAM analysis revealed a highly significant elevated expression of interferon (IFN) type I regulated genes in patients with RA compared with healthy individuals, which was confirmed by gene ontology and pathway analysis, suggesting that this pathway was activated systemically in RA. A quantitative analysis revealed that increased expression of IFN-response genes was characteristic of approximately half of the patients (IFNhigh patients). Application of pathway analysis revealed that the IFNhigh group was largely different from the controls, with evidence for upregulated pathways involved in coagulation and complement cascades, and fatty acid metabolism, while the IFNlow group was similar to the controls. Conclusion: The IFN type I signature defines a subgroup of patients with RA, with a distinct biomolecular phenotype, characterised by increased activity of the innate defence system, coagulation and complement cascades, and fatty acid metabolism.


Clinical Cancer Research | 2007

Gene Expression Signatures for Tumor Progression, Tumor Subtype, and Tumor Thickness in Laser-Microdissected Melanoma Tissues

Jochen Jaeger; Dirk Koczan; Hans-Juergen Thiesen; Saleh M. Ibrahim; Gerd Gross; Rainer Spang; Manfred Kunz

Purpose: To better understand the molecular mechanisms of malignant melanoma progression and metastasis, gene expression profiling was done of primary melanomas and melanoma metastases. Experimental Design: Tumor cell–specific gene expression in 19 primary melanomas and 22 melanoma metastases was analyzed using oligonucleotide microarrays after laser-capture microdissection of melanoma cells. Statistical analysis was done by random permutation analysis and support vector machines. Microarray data were further validated by immunohistochemistry and immunoblotting. Results: Overall, 308 genes were identified that showed significant differential expression between primary melanomas and melanoma metastases (false discovery rate ≤ 0.05). Significantly overrepresented gene ontology categories in the list of 308 genes were cell cycle regulation, mitosis, cell communication, and cell adhesion. Overall, 47 genes showed up-regulation in metastases. These included Cdc6, Cdk1, septin 6, mitosin, kinesin family member 2C, osteopontin, and fibronectin. Down-regulated genes included E-cadherin, fibroblast growth factor binding protein, and desmocollin 1 and desmocollin 3, stratifin/14-3-3σ, and the chemokine CCL27. Using support vector machine analysis of gene expression data, a performance of >85% correct classifications for primary melanomas and metastases was reached. Further analysis showed that subtypes of primary melanomas displayed characteristic gene expression patterns, as do thin tumors (≤1.0 mm Breslow thickness) compared with intermediate and thick tumors (>2.0 mm Breslow thickness). Conclusions: Taken together, this large-scale gene expression study of malignant melanoma identified molecular signatures related to metastasis, melanoma subtypes, and tumor thickness. These findings not only provide deeper insights into the pathogenesis of melanoma progression but may also guide future research on innovative treatments.


Molecular Cancer | 2003

Molecular responses to hypoxia in tumor cells

Manfred Kunz; Saleh M. Ibrahim

Highly aggressive, rapidly growing tumors are exposed to hypoxia or even anoxia which occurs as a consequence of inadequate blood supply. Both hypoxia and consecutive hypoxia/reoxygenation exert a variety of influences on tumor cell biology. Among these are activation of certain signal transduction pathways and gene regulatory mechanisms, induction of selection processes for gene mutations, tumor cell apoptosis and tumor angiogenesis. Most of these mechanisms contribute to tumor progression. Therefore, tissue hypoxia has been regarded as a central factor for tumor aggressiveness and metastasis. In this review, we summarize the current knowledge about the molecular mechanisms induced by tumor cell hypoxia with a special emphasis on intracellular signal transduction, gene regulation, angiogenesis and apoptosis. Interfering with these pathways might open perspectives for future innovative treatment of highly aggressive metastasizing tumors.


Mediators of Inflammation | 2009

Cytokines and Cytokine Profiles in Human Autoimmune Diseases and Animal Models of Autoimmunity

Manfred Kunz; Saleh M. Ibrahim

The precise pathomechanisms of human autoimmune diseases are still poorly understood. However, a deepened understanding of these is urgently needed to improve disease prevention and early detection and guide more specific treatment approaches. In recent years, many new genes and signalling pathways involved in autoimmunity with often overlapping patterns between different disease entities have been detected. Major contributions were made by experiments using DNA microarray technology, which has been used for the analysis of gene expression patterns in chronic inflammatory and autoimmune diseases, among which were rheumatoid arthritis, systemic lupus erythematosus, psoriasis, systemic sclerosis, multiple sclerosis, and type-1 diabetes. In systemic lupus erythematosus, a so-called interferon signature has been identified. In psoriasis, researchers found a particular immune signalling cluster. Moreover the identification of a new subset of inflammatory T cells, so-called Th17 T cells, secreting interleukin (IL)-17 as one of their major cytokines and the identification of the IL-23/IL-17 axis of inflammation regulation, have significantly improved our understanding of autoimmune diseases. Since a plethora of new treatment approaches using antibodies or small molecule inhibitors specifically targeting cytokines, cellular receptors, or signalling mechanisms has emerged in recent years, more individualized treatment for affected patients may be within reach in the future.


Nature Immunology | 2004

Fas ligation on macrophages enhances IL-1R1–Toll-like receptor 4 signaling and promotes chronic inflammation

Yingyu Ma; Hongtao Liu; Hoang Tu-Rapp; Hans Juergen Thiesen; Saleh M. Ibrahim; Shawn M. Cole; Richard M. Pope

The nonapoptotic functions of Fas ligation are incompletely characterized. In contrast to expectations, we show here that Fas-deficient mice developed less-severe collagen-induced arthritis than did control mice. Despite having milder arthritis, Fas-deficient mice had more of the critical pro-inflammatory mediator interleukin-1β (IL-1β) in their joints, suggesting inefficient activation through IL-1 receptor 1 (IL-1R1) when Fas signaling is deficient. In primary human macrophages and macrophages from Fas- or Fas ligand (FasL)-deficient mice, interruption of Fas-FasL signaling suppressed nuclear factor-κB activation and cytokine expression induced by IL-1β and lipopolysaccharide. This cross-talk was mediated by the Fas-associated death domain through interaction with myeloid differentiation factor 88. These observations document a unique mechanism whereby Fas-FasL interactions enhance activation through the IL-1R1 or Toll-like receptor 4 pathway, which may contribute to the pathogenesis of chronic arthritis.


Pancreas | 2001

Pancreatic Adenocarcinoma Cell Lines Show Variable Susceptibility to TRAIL-Mediated Cell Death

Saleh M. Ibrahim; Jörg Ringel; Christian Schmidt; Bruno Ringel; Petra Müller; Dirk Koczan; Hans-Jürgen Thiesen; Matthias Löhr

Background and Aims Programmed cell death via the Fas receptor/Fas Ligand and DR4, DR5/TRAIL plays a major role in tumor escape and elimination mechanisms. It also promises to be an effective therapy alternative for aggressive tumors, as has been recently shown for colon, breast, and lung cancer cells. We attempted to clarify the role of these molecules in aggressivity of pancreatic carcinomas and to identify possible pathways as targets for therapy. Methods Five pancreatic cell lines were investigated for the expression of FasL/Fas, DcR3, DR4, DR5/TRAIL, DcR1, DcR2, and other death pathways related molecules such as Bax, bcl-xL, bcl-2, FADD, and caspase-3 by flow cytometry, immunoblotting, and RT/PCR, both semiquantitative and real time (TaqMan). The susceptibility of these cell lines to apoptosis mediated by recombinant TRAIL was investigated. The effect of therapeutic agents (gemcitabine) on their susceptibility to TRAIL induced apoptosis was studied as well. Results Pancreatic adenocarcinomas expressed high levels of apoptosis-inducing receptors and ligands. They showed differential susceptibility to cell death induced by TRAIL, despite expressing intact receptors and signaling machineries. Treatment with commonly used therapeutic agents did not augment their susceptibility to apoptosis. This could be explained by the fact that they expressed differentially high levels of decoy receptors, as well as molecules known as inhibitors of apoptosis. Conclusions The data suggest that pancreatic carcinoma cells have developed different mechanisms to evade the immune system. One is the expression of nonfunctional receptors, decoy receptors, and molecules that block cell death, such as bcl2 and bcl-xL. The second is the expression of apoptosis-inducing ligands, such as TRAIL, that could induce cell death of immune cells. The success in treating malignant tumors by recombinant TRAIL might apply to some but not all pancreatic tumors because of their differential resistance to TRAIL-induced cell death.


Genome Research | 2008

Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains

Xinhua Yu; Ulrike Gimsa; Lena Wester-Rosenlöf; Ellen Kanitz; Winfried Otten; Manfred Kunz; Saleh M. Ibrahim

Previous reports have demonstrated that the mtDNA of mouse common inbred strains (CIS) originated from a single female ancestor and that mtDNA mutations occurred during CIS establishment. This situation provides a unique opportunity to investigate the impact of individual mtDNA variations on complex traits in mammals. In this study, we compiled the complete mtDNA sequences of 52 mouse CIS. Phylogenetic analysis demonstrated that 50 of the 52 CIS descended from a single female Mus musculus domesticus mouse, and mtDNA mutations have accumulated in 26 of the CIS. We then generated conplastic strains on the C57BL/6J background for 12 mtDNA variants with one to three functional mtDNA mutations. We also generated conplastic strains for mtDNA variants of the four M. musculus subspecies, each of which contains hundreds of mtDNA variations. In total, a panel of conplastic strains was generated for 16 mtDNA variants. Phenotypic analysis of the conplastic strains demonstrated that mtDNA variations affect susceptibility to experimental autoimmune encephalomyelitis and anxiety-related behavior, which confirms that mtDNA variations affect complex traits. Thus, we have developed a unique genetic resource that will facilitate exploration of the biochemical and physiological roles of mitochondria in complex traits.


Journal of Molecular Medicine | 2005

Association of a common polymorphism in the promoter of UCP2 with susceptibility to multiple sclerosis

Susanne Vogler; Rene Goedde; Bianca Miterski; Ralf Gold; Antje Kroner; Dirk Koczan; Uwe-Klaus Zettl; Peter Rieckmann; Joerg T. Epplen; Saleh M. Ibrahim

Uncoupling protein 2 (UCP2) is a member of the mitochondrial proton transport family that uncouples proton entry to the mitochondria from ATP synthesis. UCP2 expression levels have been linked to predisposition to diabetes and obesity. In addition, UCP2 prevents neuronal death and injury. Here we show that the common −866G/A promoter polymorphism is associated with susceptibility to multiple sclerosis (MS) in the German population. We analysed altogether 1,097 MS patients and 462 control subjects from two cohorts and found that the common G allele is associated with disease susceptibility (p=0.0015). The UCP2 −866G allele is correlated with lower levels of UCP2 expression as shown here in vitro and in vivo. Thus, UCP2 promoter polymorphism may contribute to MS susceptibility by regulating the level of UCP2 protein in the central nervous and/or the immune systems.


Genes and Immunity | 2012

Meta-analysis reveals an association of PTPN22 C1858T with autoimmune diseases, which depends on the localization of the affected tissue

Junfeng Zheng; Saleh M. Ibrahim; Frank Petersen; Xinhua Yu

Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a strong susceptibility gene shared by many autoimmune diseases. The aim of this study was to explore the mechanisms underlying this relationship. We performed a comprehensive analysis of the association between PTPN22 polymorphism C1858T and autoimmune diseases. The results showed a remarkable pattern; PTPN22 C1858T was strongly associated with type I diabetes, rheumatoid arthritis, immune thrombocytopenia, generalized vitiligo with concomitant autoimmune diseases, idiopathic inflammatory myopathies, Graves’ disease, juvenile idiopathic arthritis, myasthenia gravis, systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody-associated vasculitis and Addison’s disease. By contrast, PTPN22 C1858T showed a negligible association with systemic sclerosis, celiac disease, multiple sclerosis, psoriasis, ankylosing spondylitis, pemphigus vulgaris, ulcerative colitis, primary sclerosing cholangitis, primary biliary cirrhosis, Crohn’s disease and acute anterior uveitis. Further analysis revealed a clear distinction between the two groups of diseases with regard to their targeted tissues: most autoimmune diseases showing an insignificant association with PTPN22 C1858T manifest in skin, the gastrointestinal tract or in immune privileged sites. These results showed that the association of PTPN22 polymorphism with autoimmune diseases depends on the localization of the affected tissue, suggesting a role of targeted organ variation in the disease manifestations.

Collaboration


Dive into the Saleh M. Ibrahim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge