Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salik Hussain is active.

Publication


Featured researches published by Salik Hussain.


Toxicology | 2009

Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount

Salik Hussain; Sonja Boland; Armelle Baeza-Squiban; Rodolphe Hamel; Leen Thomassen; Johan A. Martens; Marie Annick Billon-Galland; Jocelyne Fleury-Feith; Frédéric Moisan; Jean-Claude Pairon; Francelyne Marano

The ubiquitous presence of nanoparticles (NPs) together with increasing evidence linking them to negative health effects points towards the need to develop the understanding of mechanisms by which they exert toxic effects. This study was designed to investigate the role of surface area and oxidative stress in the cellular effects of two chemically distinct NPs, carbon black (CB) and titanium dioxide (TiO(2)), on the bronchial epithelial cell line (16HBE14o-). CB and TiO(2) NPs were taken up by 16HBE cells in a dose-dependent manner and were localized within the endosomes or free in the cytoplasm. Oxidative stress produced inside the cell by NPs was well correlated to the BET surface area and endocytosis of NPs. Contrary to intracellular conditions only CB NPs produced reactive oxygen species (ROS) under abiotic conditions. Exposure of cells to NPs resulted in an increased granulocyte macrophage colony stimulating factor (GM-CSF) mRNA expression and secretion. Inflammatory effects of NPs were dependent on the surface area and were mediated through oxidative stress as they were inhibited by catalase. It can be concluded that NP induced oxidative stress and pro-inflammatory responses are well correlated not only with the BET (Brunauer, Emmett and Teller) surface of the individual NPs but also with the internalized amount of NPs. Differences of even few nanometers in primary particle size lead to significant changes in inflammatory and oxidative stress responses.


Particle and Fibre Toxicology | 2010

Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells.

Salik Hussain; Leen Thomassen; Ioana Ferecatu; Marie-Caroline Borot; Karine Andreau; Johan A. Martens; Jocelyne Fleury; Armelle Baeza-Squiban; Francelyne Marano; Sonja Boland

BackgroundIncreasing environmental and occupational exposures to nanoparticles (NPs) warrant deeper insight into the toxicological mechanisms induced by these materials. The present study was designed to characterize the cell death induced by carbon black (CB) and titanium dioxide (TiO2) NPs in bronchial epithelial cells (16HBE14o- cell line and primary cells) and to investigate the implicated molecular pathways.ResultsDetailed time course studies revealed that both CB (13 nm) and TiO2(15 nm) NP exposed cells exhibit typical morphological (decreased cell size, membrane blebbing, peripheral chromatin condensation, apoptotic body formation) and biochemical (caspase activation and DNA fragmentation) features of apoptotic cell death. A decrease in mitochondrial membrane potential, activation of Bax and release of cytochrome c from mitochondria were only observed in case of CB NPs whereas lipid peroxidation, lysosomal membrane destabilization and cathepsin B release were observed during the apoptotic process induced by TiO2 NPs. Furthermore, ROS production was observed after exposure to CB and TiO2 but hydrogen peroxide (H2O2) production was only involved in apoptosis induction by CB NPs.ConclusionsBoth CB and TiO2 NPs induce apoptotic cell death in bronchial epithelial cells. CB NPs induce apoptosis by a ROS dependent mitochondrial pathway whereas TiO2 NPs induce cell death through lysosomal membrane destabilization and lipid peroxidation. Although the final outcome is similar (apoptosis), the molecular pathways activated by NPs differ depending upon the chemical nature of the NPs.


Archives of Toxicology | 2011

Nanoparticles: molecular targets and cell signalling

Francelyne Marano; Salik Hussain; Fernando Rodrigues-Lima; Armelle Baeza-Squiban; Sonja Boland

Increasing evidence linking nanoparticles (NPs) with different cellular outcomes necessitate an urgent need for the better understanding of cellular signalling pathways triggered by NPs. Oxidative stress has largely been reported to be implicated in NP-induced toxicity. It could activate a wide variety of cellular events such as cell cycle arrest, apoptosis, inflammation and induction of antioxidant enzymes. These responses occur after the activation of different cellular pathways. In this context, three groups of MAP kinase cascades [ERK (extracellular signal-regulated kinases), p38 mitogen-activated protein kinase and JNK (c-Jun N-terminal kinases)] as well as redox-sensitive transcription factors such as NFκB and Nrf-2 were specially investigated. The ability of NPs to interact with these signalling pathways could partially explain their cytotoxicity. The induction of apoptosis is also closely related to the modulation of signalling pathways induced by NPs. Newly emerged scientific areas of research are the studies on interactions between NPs and biological molecules in body fluids, cellular microenvironment, intracellular components or secreted cellular proteins such as cytokines, growth factors and enzymes and use of engineered NPs to target various signal transduction pathways in cancer therapy. Recently published data present the ability of NPs to interact with membrane receptors leading to a possible aggregation of these receptors. These interactions could lead to a sustained modulation of specific signalling in the target cells or paracrine and even “by-stander” effects of the neighbouring cells or tissues. However, oxidative stress is not sufficient to explain specific mechanisms which could be induced by NPs, and these new findings emphasize the need to revise the paradigm of oxidative stress to explain the effects of NPs.


European Respiratory Journal | 2011

Lung exposure to nanoparticles modulates an asthmatic response in a mouse model

Salik Hussain; J.A.J. Vanoirbeek; Katrien Luyts; V. De Vooght; Eric Verbeken; Leen Thomassen; Johan A. Martens; David Dinsdale; Sonja Boland; Francelyne Marano; Ben Nemery; Perrine Hoet

The aim of this study was to investigate the modulation of an asthmatic response by titanium dioxide (TiO2) or gold (Au) nanoparticles (NPs) in a murine model of diisocyanate-induced asthma. On days 1 and 8, BALB/c mice received 0.3% toluene diisocyanate (TDI) or the vehicle acetone–olive oil (AOO) on the dorsum of both ears (20 &mgr;L). On day 14, the mice were oropharyngeally dosed with 40 &mgr;L of a NP suspension (0.4 mg·mL−1 (∼0.8 mg·kg−1) TiO2 or Au). 1 day later (day 15), the mice received an oropharyngeal challenge with 0.01% TDI (20 &mgr;L). On day 16, airway hyperreactivity (AHR), bronchoalveolar lavage (BAL) cell and cytokine analysis, lung histology, and total serum immunoglobulin E were assessed. NP exposure in sensitised mice led to a two- (TiO2) or three-fold (Au) increase in AHR, and a three- (TiO2) or five-fold (Au) increase in BAL total cell counts, mainly comprising neutrophils and macrophages. The NPs taken up by BAL macrophages were identified by energy dispersive X-ray spectroscopy. Histological analysis revealed increased oedema, epithelial damage and inflammation. In conclusion, these results show that a low, intrapulmonary doses of TiO2 or Au NPs can aggravate pulmonary inflammation and AHR in a mouse model of diisocyanate-induced asthma.


ACS Nano | 2012

Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes.

Salik Hussain; Faris Al-Nsour; Annette B. Rice; Jamie Marshburn; Brenda Yingling; Zhaoxia Ji; Jeffrey I. Zink; Nigel J. Walker; Stavros Garantziotis

Cerium dioxide nanoparticles (CeO(2) NPs) have diversified industrial uses, and novel therapeutic applications are actively being pursued. There is a lack of mechanistic data concerning the effects of CeO(2) NPs on primary human cells. We aimed at characterizing the cytotoxic effects of CeO(2) NPs in human peripheral blood monocytes. CeO(2) NPs and their suspensions were thoroughly characterized, including using transmission electron microscopy (TEM), dynamic light scattering, and zeta potential analysis. Blood from healthy human volunteers was drawn through phlebotomy, and CD14+ cells were isolated. Cells were exposed to CeO(2) NPs (0.5-10 μg/mL) for 20 or 40 h, and mechanisms of cell injury were studied. TEM revealed that CeO(2) NPs are internalized by monocytes and are found either in vesicles or free in the cytoplasm. CeO(2) NP exposure leads to decrease in cell viability, and treated cells exhibit characteristic hallmarks of apoptosis (activation of Bax, loss of mitochondrial membrane potential, DNA fragmentation). CeO(2) NP toxicity is caused by mitochondrial damage and overexpression of apoptosis inducing factor, but is not due to caspase activation or reactive oxygen species production. Moreover, CeO(2) NP exposure leads to autophagy, which is further increased after pharmacological inhibition of tumor suppressor protein p53. Inhibition of autophagy partially reverses cell death by CeO(2) NPs. It is concluded that CeO(2) NPs are toxic to primary human monocytes at relatively low doses.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2012

Interactions of nanomaterials with the immune system.

Salik Hussain; Jeroen Vanoirbeek; Peter Hoet

Evaluation of the immunomodulatory potentials of nanomaterials is essential for developing safe and consumer-friendly nanotechnology. Various nanomaterials interact with the immune system, in a beneficial or deleterious way, but mechanistic details about such interactions are scarce. A lack of agreed-upon guidelines for evaluating the immunotoxicity of nanoparticles (NPs) adds to the complexity of the issue. Various review articles have summarized the immune system interactions of biodegradable NPs (with pharmaceutical uses), but such information is largely lacking for nonbiodegradable NPs. Here we give an overview of interactions of nonbiodegradable, persistent NPs with the immune system. Particular emphases include key factors that shape such interactions, cell-specific responses, allergy and immune-sensitive respiratory disorders.


Inhalation Toxicology | 2009

Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: Need for multiparametric evaluation due to adsorption artifacts

Stéphanie Val; Salik Hussain; Sonja Boland; Rodolphe Hamel; Armelle Baeza-Squiban; Francelyne Marano

The initiation of an inflammatory process is the main adverse effect observed following the exposure of the airway epithelium to nanoparticles (NPs). This study was designed to explore the pro-inflammatory potential of two different NPs of similar size but of different compositions (CB 13 nm and TiO2 15 nm) on a human bronchial epithelial cell line (16HBE14o-). The expression of granulocyte–macrophage colony-stimulating factor (GM-CSF), interleukin (IL-6), and tumor necrosis factor alpha (TNFα) was evaluated in terms of mRNA, intracellular proteins, and released cytokines. Exposure to NPs induced a dose-dependent expression of all these cytokines, depending upon the chemical composition of NPs. The released cytokines appeared to be an inaccurate methodology to evaluate the pro-inflammatory response. Indeed, NPs adsorbed cytokines, and the binding was dependent on the nature of both the cytokine and NPs. Furthermore, addition of fetal calf serum or bovine serum albumin improved the detection of cytokines but also reduced cellular responses. Use of different detergents (Tween, Triton, and NP40) demonstrated limited efficiency to desorb cytokines from NPs. Thus, this study demonstrated the pro-inflammatory potential for CB and TiO2 NP but underlines the methodological artifacts faced during the in vitro evaluation of cytokine release that necessitates a multiparametric evaluation.


Environmental science. Nano | 2014

The yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity

Robert A. Yokel; Salik Hussain; Stavros Garantziotis; Philip Demokritou; Vincent Castranova; Flemming R. Cassee

This critical review evolved from a SNO Special Workshop on Nanoceria panel presentation addressing the toxicological risks of nanoceria: accumulation, target organs, and issues of clearance; how exposure dose/concentration, exposure route, and experimental preparation/model influence the different reported effects of nanoceria; and how can safer by design concepts be applied to nanoceria? It focuses on the most relevant routes of human nanoceria exposure and uptake, disposition, persistence, and resultant adverse effects. The pulmonary, oral, dermal, and topical ocular exposure routes are addressed as well as the intravenous route, as the latter provides a reference for the pharmacokinetic fate of nanoceria once introduced into blood. Nanoceria reaching the blood is primarily distributed to mononuclear phagocytic system organs. Available data suggest nanocerias distribution is not greatly affected by dose, shape, or dosing schedule. Significant attention has been paid to the inhalation exposure route. Nanoceria distribution from the lung to the rest of the body is less than 1% of the deposited dose, and from the gastrointestinal tract even less. Intracellular nanoceria and organ burdens persist for at least months, suggesting very slow clearance rates. The acute toxicity of nanoceria is very low. However, large/accumulated doses produce granuloma in the lung and liver, and fibrosis in the lung. Toxicity, including genotoxicity, increases with exposure time; the effects disappear slowly, possibly due to nanocerias biopersistence. Nanoceria may exert toxicity through oxidative stress. Adverse effects seen at sites distal to exposure may be due to nanoceria translocation or released biomolecules. An example is elevated oxidative stress indicators in the brain, in the absence of appreciable brain nanoceria. Nanoceria may change its nature in biological environments and cause changes in biological molecules. Increased toxicity has been related to greater surface Ce3+, which becomes more relevant as particle size decreases and the ratio of surface area to volume increases. Given its biopersistence and resulting increased toxicity with time, there is a risk that long-term exposure to low nanoceria levels may eventually lead to adverse health effects. This critical review provides recommendations for research to resolve some of the many unknowns of nanocerias fate and adverse effects.


ACS Nano | 2011

Carbon Black Nanoparticles Impair Acetylation of Aromatic Amine Carcinogens through Inactivation of Arylamine N-Acetyltransferase Enzymes

Elodie Sanfins; Salik Hussain; Florent Busi; Alain Chaffotte; Fernando Rodrigues-Lima; Jean-Marie Dupret

Carbon black nanoparticles (CB NPs) and their respirable aggregates/agglomerates are classified as possibly carcinogenic to humans. In certain industrial work settings, CB NPs coexist with aromatic amines (AA), which comprise a major class of human carcinogens. It is therefore crucial to characterize the interactions of CB NPs with AA-metabolizing enzymes. Here, we report molecular and cellular evidence that CB NPs interfere with the enzymatic acetylation of carcinogenic AA by rapidly binding to arylamine N-acetyltransferase (NAT), the major AA-metabolizing enzyme. Kinetic and biophysical analyses showed that this interaction leads to protein conformational changes and an irreversible loss of enzyme activity. In addition, our data showed that exposure to CB NPs altered the acetylation of 2-aminofluorene in intact lung Clara cells by impairing the endogenous NAT-dependent pathway. This process may represent an additional mechanism that contributes to the carcinogenicity of inhaled CB NPs. Our results add to recent data suggesting that major xenobiotic detoxification pathways may be altered by certain NPs and that this can result in potentially harmful pharmacological and toxicological effects.


PLOS ONE | 2014

Atomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes In Vitro and Reduces Lung Fibrosis in Mice In Vivo

Alexia J. Taylor; Christina D. McClure; Kelly A. Shipkowski; Elizabeth A. Thompson; Salik Hussain; Stavros Garantziotis; Gregory N. Parsons; James C. Bonner

Background Multi-walled carbon nanotubes (MWCNTs) pose a possible human health risk for lung disease as a result of inhalation exposure. Mice exposed to MWCNTs develop pulmonary fibrosis. Lung macrophages engulf MWCNTs and produce pro-fibrogenic cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and osteopontin (OPN). Atomic layer deposition (ALD) is a novel process used to enhance functional properties of MWCNTs, yet the consequence of ALD-modified MWCNTs on macrophage biology and fibrosis is unknown. Methods The purpose of this study was to determine whether ALD coating with aluminum oxide (Al2O3) would alter the fibrogenic response to MWCNTs and whether cytokine expression in human macrophage/monocytes exposed to MWCNTs in vitro would predict the severity of lung fibrosis in mice. Uncoated (U)-MWCNTs or ALD-coated (A)-MWCNTs were incubated with THP-1 macrophages or human peripheral blood mononuclear cells (PBMC) and cell supernatants assayed for cytokines by ELISA. C57BL6 mice were exposed to a single dose of A- or U-MWCNTs by oropharyngeal aspiration (4 mg/kg) followed by evaluation of histopathology, lung inflammatory cell counts, and cytokine levels at day 1 and 28 post-exposure. Results ALD coating of MWCNTs with Al2O3 enhanced IL-1β secretion by THP-1 and PBMC in vitro, yet reduced protein levels of IL-6, TNF-α, and OPN production by THP-1 cells. Moreover, Al2O3 nanoparticles, but not carbon black NPs, increased IL-1β but decreased OPN and IL-6 in THP-1 and PBMC. Mice exposed to U-MWCNT had increased levels of all four cytokines assayed and developed pulmonary fibrosis by 28 days, whereas ALD-coating significantly reduced fibrosis and cytokine levels at the mRNA or protein level. Conclusion These findings indicate that ALD thin film coating of MWCNTs with Al2O3 reduces fibrosis in mice and that in vitro phagocyte expression of IL-6, TNF-α, and OPN, but not IL-1β, predict MWCNT-induced fibrosis in the lungs of mice in vivo.

Collaboration


Dive into the Salik Hussain's collaboration.

Top Co-Authors

Avatar

Stavros Garantziotis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annette B. Rice

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jamie Marshburn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James C. Bonner

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Nigel J. Walker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexia J. Taylor

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Ryan J. Snyder

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zhaoxia Ji

University of California

View shared research outputs
Top Co-Authors

Avatar

Jeroen Vanoirbeek

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge