Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salil Sharma is active.

Publication


Featured researches published by Salil Sharma.


Biology of Sex Differences | 2014

Influence of sex differences on microRNA gene regulation in disease

Salil Sharma; Mansoureh Eghbali

Sexual dimorphism is observed in most human diseases. The difference in the physiology and genetics between sexes can contribute tremendously to the disease prevalence, severity, and outcome. Both hormonal and genetic differences between males and females can lead to differences in gene expression patterns that can influence disease risk and course. MicroRNAs have emerged as potential regulatory molecules in all organisms. They can have a broad effect on every aspect of physiology, including embryogenesis, metabolism, and growth and development. Numerous microRNAs have been identified and elucidated to play a key role in cardiovascular diseases, as well as in neurological and autoimmune disorders. This is especially important as microRNA-based tools can be exploited as beneficial therapies for disease treatment and prevention. Sex steroid hormones as well as X-linked genes can have a considerable influence on the regulation of microRNAs. However, there are very few studies highlighting the role of microRNAs in sex biased diseases. This review attempts to summarize differentially regulated microRNAs in males versus females in different diseases and calls for more attention in this underexplored area that should set the basis for more effective therapeutic strategies for sexually dimorphic diseases.


Anesthesiology | 2012

Intralipid, a Clinically Safe Compound, Protects the Heart Against Ischemia-Reperfusion Injury More Efficiently Than Cyclosporine-A

Jingyuan Li; Andrea Iorga; Salil Sharma; Ji-Youn Youn; Rod Partow-Navid; Soban Umar; Hua Cai; Siamak Rahman; Mansoureh Eghbali

Background:We have recently shown that postischemic administration of intralipid protects the heart against ischemia-reperfusion injury. Here we compared the cardioprotective effects of intralipid with cyclosporine-A, a potent inhibitor of the mitochondrial permeability transition pore opening. Methods:In vivo rat hearts or isolated Langendorff-perfused mouse hearts were subjected to ischemia followed by reperfusion with intralipid (0.5%, 1% and 2% ex-vivo, and 20% in vivo), cyclosporine-A (0.2 &mgr;M, 0.8 &mgr;M, and 1.5 &mgr;M ex- vivo and 10 mg/kg in vivo), or vehicle. The hemodynamic function, infarct size, calcium retention capacity, mitochodrial superoxide production, and phosphorylation levels of protein kinase B (Akt)/glycogen synthase kinase-3&bgr; (GSK-3&bgr;) were measured. The values are mean ± SEM. Results:Administration of intralipid at reperfusion significantly reduced myocardial infarct size compared with cyclosporine-A in vivo (infarct size/area at risk)%: 22.9 ± 2.5% vs. 35.2 ± 3.5%; P = 0.030, n = 7/group). Postischemic administration of intralipid at its optimal dose (1%) was more effective than cyclosporine-A (0.8 &mgr;M) in protecting the ex vivo heart against ischemia-reperfusion injury, as the rate pressure product at the end of reperfusion was significantly higher (mmHg · beats/min: 12,740 ± 675 [n = 7] vs. 9,203 ± 10,781 [n = 5], P = 0.024), and the infarct size was markedly smaller (17.3 ± 2.9 [n = 7] vs. 29.2 ± 2.7 [n = 5], P = 0.014). Intralipid was as efficient as cyclosporine-A in inhibiting the mitochondrial permeability transition pore opening (calcium retention capacity = 280 ± 8.2 vs. 260.3 ± 2.9 nmol/mg mitochondria protein in cyclosporine-A, P = 0.454, n = 6) and in reducing cardiac mitochondrial superoxide production. Unlike intralipid, which increased phosphorlyation of Akt (6-fold) and GSK-3&bgr; (5-fold), cyclosporine-A had no effect on the activation of these prosurvival kinases. Conclusions:Although intralipid inhibits the opening of the mitochondrial permeability transition pore as efficiently as cyclosporine-A, intralipid is more effective in reducing the infarct size and improving the cardiac functional recovery.


Hypertension | 2012

Genistein, a Soy Phytoestrogen, Reverses Severe Pulmonary Hypertension and Prevents Right Heart Failure in Rats

Humann Matori; Soban Umar; Rangarajan D. Nadadur; Salil Sharma; Rod Partow-Navid; Michelle Afkhami; Marjan Amjedi; Mansoureh Eghbali

Pretreatment with a phytoestrogen genistein has been shown to attenuate the development of pulmonary hypertension (PH). Because PH is not always diagnosed early, we examined whether genistein could also reverse preexisting established PH and prevent associated right heart failure (RHF). PH was induced in male rats by 60 mg/kg of monocrotaline. After 21 days, when PH was well established, rats received daily injection of genistein (1 mg/kg per day) for 10 days or were left untreated to develop RHF by day 30. Effects of genistein on human pulmonary artery smooth muscle cell and endothelial cell proliferation and neonatal rat ventricular myocyte hypertrophy were assessed in vitro. Severe PH was evident 21 days after monocrotaline, as peak systolic right ventricular pressure increased to 66.35±1.03 mm Hg and right ventricular ejection fraction reduced to 41.99±1.27%. PH progressed to RHF by day 30 (right ventricular pressure, 72.41±1.87 mm Hg; RV ejection fraction, 29.25±0.88%), and mortality was ≈75% in RHF rats. Genistein therapy resulted in significant improvement in lung and heart function as right ventricular pressure was significantly reduced to 43.34±4.08 mm Hg and right ventricular ejection fraction was fully restored to 65.67±1.08% similar to control. Genistein reversed PH-induced pulmonary vascular remodeling in vivo and inhibited human pulmonary artery smooth muscle cell proliferation by ≈50% in vitro likely through estrogen receptor-&bgr;. Genistein also reversed right ventricular hypertrophy (right ventricular hypertrophy index, 0.35±0.029 versus 0.70±0.080 in RHF), inhibited neonatal rat ventricular myocyte hypertrophy, and restored PH-induced loss of capillaries in the right ventricle. These improvements in cardiopulmonary function and structure resulted in 100% survival by day 30. Genistein restored PH-induced downregulation of estrogen receptor-&bgr; expression in the right ventricle and lung. In conclusion, genistein therapy not only rescues preexisting severe PH but also prevents the progression of severe PH to RHF.


Circulation | 2014

Apolipoprotein A-I Mimetic Peptide 4F Rescues Pulmonary Hypertension by Inducing MicroRNA-193-3p

Salil Sharma; Soban Umar; François Potus; Andrea Iorga; Gabriel Wong; David Meriwether; Sandra Breuils-Bonnet; Denise Mai; Kaveh Navab; David L. Ross; Mohamad Navab; Steeve Provencher; Alan M. Fogelman; Sébastien Bonnet; Srinivasa T. Reddy; Mansoureh Eghbali

Background— Pulmonary arterial hypertension is a chronic lung disease associated with severe pulmonary vascular changes. A pathogenic role of oxidized lipids such as hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids is well established in vascular disease. Apolipoprotein A-I mimetic peptides, including 4F, have been reported to reduce levels of these oxidized lipids and improve vascular disease. However, the role of oxidized lipids in the progression of pulmonary arterial hypertension and the therapeutic action of 4F in pulmonary arterial hypertension are not well established. Methods and Results— We studied 2 different rodent models of pulmonary hypertension (PH): a monocrotaline rat model and a hypoxia mouse model. Plasma levels of hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids were significantly elevated in PH. 4F treatment reduced these levels and rescued preexisting PH in both models. MicroRNA analysis revealed that microRNA-193-3p (miR193) was significantly downregulated in the lung tissue and serum from both patients with pulmonary arterial hypertension and rodents with PH. In vivo miR193 overexpression in the lungs rescued preexisting PH and resulted in downregulation of lipoxygenases and insulin-like growth factor-1 receptor. 4F restored PH-induced miR193 expression via transcription factor retinoid X receptor &agr;. Conclusions— These studies establish the importance of microRNAs as downstream effectors of an apolipoprotein A-I mimetic peptide in the rescue of PH and suggest that treatment with apolipoprotein A-I mimetic peptides or miR193 may have therapeutic value.


Journal of the American Heart Association | 2016

Rescue of Pressure Overload‐Induced Heart Failure by Estrogen Therapy

Andrea Iorga; Jingyuan Li; Salil Sharma; Soban Umar; Jean Chrisostome Bopassa; Rangarajan D. Nadadur; Alexander Centala; Shuxun Ren; Tomoaki Saito; Ligia Toro; Yibin Wang; Enrico Stefani; Mansoureh Eghbali

Background Estrogen pretreatment has been shown to attenuate the development of heart hypertrophy, but it is not known whether estrogen could also rescue heart failure (HF). Furthermore, the heart has all the machinery to locally biosynthesize estrogen via aromatase, but the role of local cardiac estrogen synthesis in HF has not yet been studied. Here we hypothesized that cardiac estrogen is reduced in HF and examined whether exogenous estrogen therapy can rescue HF. Methods and Results HF was induced by transaortic constriction in mice, and once mice reached an ejection fraction (EF) of ≈35%, they were treated with estrogen for 10 days. Cardiac structure and function, angiogenesis, and fibrosis were assessed, and estrogen was measured in plasma and in heart. Cardiac estrogen concentrations (6.18±1.12 pg/160 mg heart in HF versus 17.79±1.28 pg/mL in control) and aromatase transcripts (0.19±0.04, normalized to control, P<0.05) were significantly reduced in HF. Estrogen therapy increased cardiac estrogen 3‐fold and restored aromatase transcripts. Estrogen also rescued HF by restoring ejection fraction to 53.1±1.3% (P<0.001) and improving cardiac hemodynamics both in male and female mice. Estrogen therapy stimulated angiogenesis as capillary density increased from 0.66±0.07 in HF to 2.83±0.14 (P<0.001, normalized to control) and reversed the fibrotic scarring observed in HF (45.5±2.8% in HF versus 5.3±1.0%, P<0.001). Stimulation of angiogenesis by estrogen seems to be one of the key mechanisms, since in the presence of an angiogenesis inhibitor estrogen failed to rescue HF (ejection fraction=29.3±2.1%, P<0.001 versus E2). Conclusions Estrogen rescues pre‐existing HF by restoring cardiac estrogen and aromatase, stimulating angiogenesis, and suppressing fibrosis.


Anesthesia & Analgesia | 2015

Involvement of Opioid Receptors in the Lipid Rescue of Bupivacaine-Induced Cardiotoxicity.

Parisa Partownavid; Salil Sharma; Jignyuan Li; Soban Umar; Siamak Rahman; Mansoureh Eghbali

BACKGROUND:Lipid emulsion (LE) has been successfully used for resuscitation of local anesthetic cardiotoxicity caused by bupivacaine overdose. Opioid receptors have been shown to play a key role in cardio protection. We explored whether this rescue action of LE is mediated through opioid receptors. METHODS:Asystole was induced by bupivacaine (10 mg/kg over 20 seconds, IV) in young male Sprague-Dawley rats, and resuscitation with LE (intralipid 20%; 5 mL/kg bolus and 0.5 mL/kg/min maintenance) was started immediately. The rats were pretreated 2 minutes before inducing asystole with nonselective opioid receptor antagonists such as naloxone and naloxone methiodide, as well as highly selective opioid receptor antagonists for subtype &kgr;, &dgr;, and µ or phosphate buffer solution as a control. Heart rates and ejection fractions were measured using echocardiography. RESULTS:LE rescue of bupivacaine cardiotoxicity was prevented by high-dose (1 mg/kg) naloxone but not by lower doses of naloxone (1, 5, and 10 µg/kg), by naloxone methiodide (which does not cross the blood–brain barrier), and by a selective &dgr;- and &kgr;-opioid receptor antagonists at a higher (10 mg/kg) dose. Successful LE rescue was not affected by highly selective µ-opioid receptor antagonists. &dgr;-Opioid receptor antagonist (10 mg/kg) pretreatment also resulted in reduced phosphorylation level of cardiac glycogen synthase kinase-3&bgr; in rats that were not resuscitated by LE compared with control. CONCLUSIONS:Our data highlight the involvement of peripheral &dgr;- and &kgr;-opioid receptors in the rescue action of LE.


Pulmonary circulation | 2016

Role of Oxidized Lipids in Pulmonary Arterial Hypertension

Salil Sharma; Gregoire Ruffenach; Soban Umar; Negar Motayagheni; Srinivasa T. Reddy; Mansoureh Eghbali

Pulmonary arterial hypertension (PAH) is a multifactorial disease characterized by interplay of many cellular, molecular, and genetic events that lead to excessive proliferation of pulmonary cells, including smooth muscle and endothelial cells; inflammation; and extracellular matrix remodeling. Abnormal vascular changes and structural remodeling associated with PAH culminate in vasoconstriction and obstruction of pulmonary arteries, contributing to increased pulmonary vascular resistance, pulmonary hypertension, and right ventricular failure. The complex molecular mechanisms involved in the pathobiology of PAH are the limiting factors in the development of potential therapeutic interventions for PAH. Over the years, our group and others have demonstrated the critical implication of lipids in the pathogenesis of PAH. This review specifically focuses on the current understanding of the role of oxidized lipids, lipid metabolism, peroxidation, and oxidative stress in the progression of PAH. This review also discusses the relevance of apolipoprotein A-I mimetic peptides and microRNA-193, which are known to regulate the levels of oxidized lipids, as potential therapeutics in PAH.


Journal of Applied Physiology | 2015

Role of miR206 in genistein-induced rescue of pulmonary hypertension in monocrotaline model.

Salil Sharma; Soban Umar; Alexander Centala; Mansoureh Eghbali

Pulmonary hypertension (PH) is a progressive lung disease associated with proliferation of smooth muscle cells and constriction of lung microvasculature, leading to increased pulmonary arterial pressure, right ventricular failure, and death. We have previously shown that genistein rescues preexisting established PH by significantly improving lung and heart function. (Matori H, Umar S, Nadadur RD, Sharma S, Partow-Navid R, Afkhami M, Amjedi M, Eghbali M. Hypertension 60: 425-430, 2012). Here, we have examined the role of microRNAs (miRs) in the rescue action of genistein in monocrotaline (MCT)-induced PH in rats. Our miR microarray analysis on the lung samples from control, PH, and genistein-rescue group revealed that miR206, which was robustly upregulated to ∼11-fold by PH, was completely normalized to control levels by genistein treatment. Next, we examined whether knockdown of miR206 could reverse preexisting established PH. PH was induced in male rats by 60 mg/kg of MCT, and rats received three intratracheal doses of either miR206 antagomir (10 mg/kg body wt) or scrambled miR control at days 17, 21, and 26. Knockdown of miR206 resulted in significant improvement in the cardiopulmonary function, as right ventricular pressure was significantly reduced to 38.6 ± 3.61 mmHg from 61.2 ± 5.4 mmHg in PH, and right ventricular hypertrophy index was decreased to 0.35 ± 0.04 from 0.59 ± 0.037 in PH. Knockdown of miR206 reversed PH-induced pulmonary vascular remodeling in vivo and was associated with restoration of PH-induced loss of capillaries in the lungs and induction of vascular endothelial growth factor A expression. In conclusion, miR206 antagomir therapy improves cardiopulmonary function and structure and rescues preexisting severe PH in MCT rat model possibly by stimulating angiogenesis in the lung.


Circulation | 2014

ApoA-I Mimetic Peptide 4F Rescues Pulmonary Hypertension by Inducing MicroRNA-193-3p

Salil Sharma; Soban Umar; François Potus; Andrea Iorga; Gabriel Wong; David Meriwether; Sandra Breuils-Bonnet; Denise Mai; Kaveh Navab; David J. Ross; Mohamad Navab; Steeve Provencher; Alan M. Fogelman; Sébastien Bonnet; Srinivasa T. Reddy; Mansoureh Eghbali

Background— Pulmonary arterial hypertension is a chronic lung disease associated with severe pulmonary vascular changes. A pathogenic role of oxidized lipids such as hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids is well established in vascular disease. Apolipoprotein A-I mimetic peptides, including 4F, have been reported to reduce levels of these oxidized lipids and improve vascular disease. However, the role of oxidized lipids in the progression of pulmonary arterial hypertension and the therapeutic action of 4F in pulmonary arterial hypertension are not well established. Methods and Results— We studied 2 different rodent models of pulmonary hypertension (PH): a monocrotaline rat model and a hypoxia mouse model. Plasma levels of hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids were significantly elevated in PH. 4F treatment reduced these levels and rescued preexisting PH in both models. MicroRNA analysis revealed that microRNA-193-3p (miR193) was significantly downregulated in the lung tissue and serum from both patients with pulmonary arterial hypertension and rodents with PH. In vivo miR193 overexpression in the lungs rescued preexisting PH and resulted in downregulation of lipoxygenases and insulin-like growth factor-1 receptor. 4F restored PH-induced miR193 expression via transcription factor retinoid X receptor &agr;. Conclusions— These studies establish the importance of microRNAs as downstream effectors of an apolipoprotein A-I mimetic peptide in the rescue of PH and suggest that treatment with apolipoprotein A-I mimetic peptides or miR193 may have therapeutic value.


Circulation | 2014

Apolipoprotein A-I Mimetic Peptide 4F Rescues Pulmonary Hypertension by Inducing MicroRNA-193-3pCLINICAL PERSPECTIVE

Salil Sharma; Soban Umar; François Potus; Andrea Iorga; Gabriel Wong; David Meriwether; Sandra Breuils-Bonnet; Denise Mai; Kaveh Navab; David L. Ross; Mohamad Navab; Steeve Provencher; Alan M. Fogelman; Sébastien Bonnet; Srinivasa T. Reddy; Mansoureh Eghbali

Background— Pulmonary arterial hypertension is a chronic lung disease associated with severe pulmonary vascular changes. A pathogenic role of oxidized lipids such as hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids is well established in vascular disease. Apolipoprotein A-I mimetic peptides, including 4F, have been reported to reduce levels of these oxidized lipids and improve vascular disease. However, the role of oxidized lipids in the progression of pulmonary arterial hypertension and the therapeutic action of 4F in pulmonary arterial hypertension are not well established. Methods and Results— We studied 2 different rodent models of pulmonary hypertension (PH): a monocrotaline rat model and a hypoxia mouse model. Plasma levels of hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids were significantly elevated in PH. 4F treatment reduced these levels and rescued preexisting PH in both models. MicroRNA analysis revealed that microRNA-193-3p (miR193) was significantly downregulated in the lung tissue and serum from both patients with pulmonary arterial hypertension and rodents with PH. In vivo miR193 overexpression in the lungs rescued preexisting PH and resulted in downregulation of lipoxygenases and insulin-like growth factor-1 receptor. 4F restored PH-induced miR193 expression via transcription factor retinoid X receptor &agr;. Conclusions— These studies establish the importance of microRNAs as downstream effectors of an apolipoprotein A-I mimetic peptide in the rescue of PH and suggest that treatment with apolipoprotein A-I mimetic peptides or miR193 may have therapeutic value.

Collaboration


Dive into the Salil Sharma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Iorga

University of California

View shared research outputs
Top Co-Authors

Avatar

Soban Umar

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soban Umar

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise Mai

University of California

View shared research outputs
Top Co-Authors

Avatar

Jingyuan Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge