Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salina Parveen is active.

Publication


Featured researches published by Salina Parveen.


International Journal of Food Microbiology | 2008

Seasonal distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay oysters and waters

Salina Parveen; Kumidini A. Hettiarachchi; John C. Bowers; Jessica L. Jones; Ml Tamplin; Rusty McKay; William Beatty; Kathy Brohawn; Ligia V. DaSilva; Angelo DePaola

The objectives of this study were to investigate the seasonal distribution of total and pathogenic Vibrio parahaemolyticus in the Chesapeake Bay oysters and waters, and to determine the degree of association between V. parahaemolyticus densities and selected environmental parameters. Oyster and water samples were collected monthly from three sites in Chesapeake Bay, Maryland from November 2004 through October 2005. During collection of samples, water temperature, salinity, turbidity, dissolved oxygen, pH, chlorophyll a, and fecal coliform levels in oysters were also determined. V. parahaemolyticus levels were enumerated by a quantitative direct-plating method followed by DNA colony hybridization; presence/absence was further determined by overnight broth enrichment followed by either standard colony isolation or real-time PCR. The thermolabile hemolysin (tlh) gene and thermostable direct hemolysin (tdh) gene were targeted for detection of total and pathogenic V. parahaemolyticus, respectively, for both direct plating and enrichment. The thermostable related hemolysin (trh) gene, which is a presumptive pathogenicity marker, was targeted only for the enrichment approach. By direct plating, colonies producing tlh signals were detected in 79% of oyster samples at densities ranging from 1.5x10(1) to 6.0x10(2) CFU/g. Pathogenic V. parahaemolyticus (tdh+) was detected in 3% (level was 10 CFU/g) of oyster samples while no V. parahaemolyticus was detected in water samples. By the enrichment approach with standard colony isolation, 67% of oyster and 55% of water samples (n=33) were positive for total V. parahaemolyticus, and all samples were negative for pathogenic V. parahaemolyticus. In contrast, enrichment followed by real-time PCR detected tlh, tdh and trh in 100%, 20% and 40% of oyster and 100%, 13% and 40% of water enrichments collected from June to October 2005, respectively. V. parahaemolyticus densities in oysters varied seasonally and were found to be positively correlated with water temperature, turbidity, and dissolved oxygen.


Journal of Food Protection | 2007

Prevalence and antimicrobial resistance of Salmonella recovered from processed poultry.

Salina Parveen; Maryam Taabodi; Jurgen G. Schwarz; Thomas P. Oscar; Jeanine Harter-Dennis; David G. White

This study was conducted to determine the prevalence and antimicrobial resistance of Salmonella isolates recovered from processed poultry. Four hundred eighty pre- and postchill whole broiler chicken carcasses were collected from a poultry processing plant between July 2004 and June 2005. Water samples also were collected at the entrance and exit of the chiller. After preenrichment, carcass and water samples were analyzed for the presence of Salmonella using the automated BAX system followed by traditional culture methods. The proportions of pre- and postchill carcasses that were positive for Salmonella were 88.4 and 84.1%, respectively. Ninety-two percent of water samples collected at the entrance of the chiller were positive for Salmonella, but all exit samples were negative. There was no significant difference in the prevalence of Salmonella between pre- and postchill carcasses (P > 0.05). Salmonella isolates recovered were serotyped and tested for susceptibility to antimicrobials. Thirteen serotypes were identified; the most common were Salmonella Kentucky (59.5%) and Salmonella Typhimurium (17.8%). Three hundred thirty-nine (79.8%) of the isolates were resistant to at least one antimicrobial, and 53.4% were resistant to three or more antimicrobials. Resistance was most often observed to tetracycline (73.4% of isolates), ampicillin (52.9%), amoxicillin-clavulanic acid (52%), ceftiofur (51.7%), streptomycin (35.2%), and sulfisoxazole (21.8%). These results indicate the high prevalence of Salmonella contamination in whole broiler carcasses, and a large number of these Salmonella isolates were resistant to commonly used antimicrobials.


International Journal of Food Microbiology | 2013

Development and validation of a predictive model for the growth of Vibrio parahaemolyticus in post-harvest shellstock oysters.

Salina Parveen; Ligia V. DaSilva; Angelo DePaola; John Bowers; Chanelle White; Kumudini Apsara Munasinghe; Kathy Brohawn; Meshack Mudoh; Ml Tamplin

Information is limited about the growth and survival of naturally-occurring Vibrio parahaemolyticus in live oysters under commercially relevant storage conditions harvested from different regions and in different oyster species. This study produced a predictive model for the growth of naturally-occurring V. parahaemolyticus in live Eastern oysters (Crassostrea virginica) harvested from the Chesapeake Bay, MD, USA and stored at 5-30 °C until oysters gapped. The model was validated with model-independent data collected from Eastern oysters harvested from the Chesapeake Bay and Mobile Bay, AL, USA and Asian (C. ariakensis) oysters from the Chesapeake Bay, VA, USA. The effect of harvest season, region and water condition on growth rate (GR) was also tested. At each time interval, two samples consisting of six oysters each were analyzed by a direct-plating method for total V. parahaemolyticus. The Baranyi D-model was fitted to the total V. parahaemolyticus growth and survival data. A secondary model was produced using the square root model. V. parahaemolyticus slowly inactivated at 5 and 10 °C with average rates of -0.002 and -0.001 log cfu/h, respectively. The average GRs at 15, 20, 25, and 30 °C were 0.038, 0.082, 0.228, and 0.219 log cfu/h, respectively. The bias and accuracy factors of the secondary model for model-independent data were 1.36 and 1.46 for Eastern oysters from Mobile Bay and the Chesapeake Bay, respectively. V. parahaemolyticus GRs were markedly lower in Asian oysters. Harvest temperature, salinity, region and season had no effect on GRs. The observed GRs were less than those predicted by the U.S. Food and Drug Administrations V. parahaemolyticus quantitative risk assessment.


Applied and Environmental Microbiology | 2012

Development and validation of a predictive model for the growth of Vibrio vulnificus in postharvest shellstock oysters

Ligia V. DaSilva; Salina Parveen; Angelo DePaola; John Bowers; Kathy Brohawn; Ml Tamplin

ABSTRACT Postharvest growth of Vibrio vulnificus in oysters can increase risk of human infection. Unfortunately, limited information is available regarding V. vulnificus growth and survival patterns over a wide range of storage temperatures in oysters harvested from different estuaries and in different oyster species. In this study, we developed a predictive model for V. vulnificus growth in Eastern oysters (Crassostrea virginica) harvested from Chesapeake Bay, MD, over a temperature range of 5 to 30°C and then validated the model against V. vulnificus growth rates (GRs) in Eastern and Asian oysters (Crassostrea ariakensis) harvested from Mobile Bay, AL, and Chesapeake Bay, VA, respectively. In the model development studies, V. vulnificus was slowly inactivated at 5 and 10°C with average GRs of −0.0045 and −0.0043 log most probable number (MPN)/h, respectively. Estimated average growth rates at 15, 20, 25, and 30°C were 0.022, 0.042, 0.087, and 0.093 log MPN/h, respectively. With respect to Eastern oysters, bias (B f) and accuracy (A f) factors for model-dependent and -independent data were 1.02 and 1.25 and 1.67 and 1.98, respectively. For Asian oysters, B f and A f were 0.29 and 3.40. Residual variations in growth rate about the fitted model were not explained by season, region, water temperature, or salinity at harvest. Growth rate estimates for Chesapeake Bay and Mobile Bay oysters stored at 25 and 30°C showed relatively high variability and were lower than Food and Agricultural Organization (FAO)/WHO V. vulnificus quantitative risk assessment model predictions. The model provides an improved tool for designing and implementing food safety plans that minimize the risk associated with V. vulnificus in oysters.


Food Microbiology | 2016

Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry

Ar’Quette Grant; Fawzy Hashem; Salina Parveen

Salmonella and Campylobacter are major causes of foodborne related illness and are traditionally associated with consuming undercooked poultry and/or consuming products that have been cross contaminated with raw poultry. Many of the isolated Salmonella and Campylobacter that can cause disease have displayed antimicrobial resistance phenotypes. Although poultry producers have reduced on-the-farm overuse of antimicrobials, antimicrobial resistant Salmonella and Campylobacter strains still persist. One method of bio-control, that is producing promising results, is the use of lytic bacteriophages. This review will highlight the current emergence and persistence of antimicrobial resistant Salmonella and Campylobacter recovered from poultry as well as bacteriophage research interventions and limitations.


Food Microbiology | 2016

Microbiological quality of fresh produce obtained from retail stores on the Eastern Shore of Maryland, United States of America.

Robert Cheruiyot Korir; Salina Parveen; Fawzy Hashem; John C. Bowers

The aim of this study was to investigate the microbiological quality of six types of fresh produce obtained from three retail stores located on the Eastern Shore of Maryland, USA. A total of 414 samples representing basil, cilantro, lettuce, scallion, spinach, and parsley were analyzed for total aerobic bacteria (APC), total coliforms, Escherichia coli, and three pathogenic bacteria (E. coli O157:H7, Listeria monocytogenes, and Salmonella), using standard methods. Presumptive pathogenic isolates were confirmed using BAX Polymerase Chain Reaction. Total aerobic populations varied widely between samples, while 38.41% were positive for total coliforms and only 10.15% for E. coli. Median abundance (log CFU/g) of total coliforms and E. coli were less than the limit of detection and that of APC ranged from 5.78 to 6.61 over the six produce types. There was a statistically significant difference in prevalence of total coliforms among the retail stores, but not for abundance of APC or prevalence of E. coli. E. coli O157:H7 and L. monocytogenes were detected in one spinach sample each, while one parsley and one cilantro sample were positive for Salmonella. There were no statistically significant differences in microbiological quality among produce types. Although the results of this study provided some indices of sanitary and/or spoilage level, no relationship was observed among the total aerobic bacteria, total coliforms, E. coli, and the presence of pathogenic bacteria in the samples tested.


Frontiers in Public Health | 2014

The Effects of Storage Temperature on the Growth of Vibrio parahaemolyticus and Organoleptic Properties in Oysters

Meshack Mudoh; Salina Parveen; Jurgen Schwarz; Tom Rippen; Anish Chaudhuri

During harvesting and storage, microbial pathogens and natural spoilage flora may grow, negatively affecting the composition and texture of oysters and posing a potential health threat to susceptible consumers. A solution to these problems would mitigate associated damaging effects on the seafood industry. The purpose of this study was to investigate the effects of storage temperature on growth of vibrios as well as other microbial, sensory, and textural characteristics of post-harvest shellstock Eastern oysters (Crassostrea virginica). Oysters harvested from the Chesapeake Bay, Maryland, during summer months (June, July, and August, 2010) were subjected to three storage temperatures (5, 10, and 20°C) over a 10-day period. At selected time intervals (0, 1, 3, 7, and 10 days), two separate samples of six oysters each were homogenated and analyzed for pH, halophilic plate counts (HPC), total vibrios, and Vibrio parahaemolyticus (Vp). Oyster meats shucked after storage were also organoleptically evaluated (acceptability, appearance, and odor). Texture analysis was performed using a texture analyzer on meats shucked from oysters held under the same conditions. The pH of the oyster homogenates showed no consistent pattern with storage time and temperature. The HPC (4.5–9.4 log CFU/g) were highest on day 7 at 20°C while olfactory acceptance reduced with time and increasing storage temperatures. The Vp counts increased over time from 3.5 to 7.5 log MPN/g by day 10. Loss of freshness as judged by appearance and odor was significant over time (p < 0.05). Toughness of oysters increased with storage time at 5 and 10°C from days 1 to 3 but was inconsistent after day 7. The results indicate that the length of storage and temperature had a significant effect on bacterial counts and olfactory acceptance of oysters but had an inconsistent effect on texture.


Food Microbiology | 2018

Seafood pathogens and information on antimicrobial resistance: A review

S. Elbashir; Salina Parveen; J. Schwarz; Thomas Rippen; M. Jahncke; A. DePaola

Seafood-borne diseases are a major public health hazard in the United States and worldwide. Per capita, seafood consumption has increased globally during recent decades. Seafood importation and domestic aquaculture farming has also increased. Moreover, several recent outbreaks of human gastroenteritis have been linked to the consumption of contaminated seafood. Investigation of seafood-borne illnesses caused by norovirus, and Vibrio, and other bacteria and viruses require a concrete knowledge about the pathogenicity and virulence properties of the etiologic agents. This review explores pathogens that have been associated with seafood and resulting outbreaks in the U.S. and other countries as well as the presence of antimicrobial resistance in the reviewed pathogens. The spectrum of such resistance is widening due to the overuse, misuse, and sub-therapeutic application of antimicrobials in humans and animals.


Poultry Science | 2017

Reduction of Salmonella in ground chicken using a bacteriophage

Ar’Quette Grant; Salina Parveen; Jurgen Schwarz; Fawzy Hashem; Bob Vimini

&NA; This studys goal was to ascertain the effectiveness of a commercially available Salmonella bacteriophage during ground chicken production focusing on: water source, different Salmonella serovars, and time. Salmonella‐free boneless, skinless chicken meat was inoculated with 4.0 Log CFU/cm2 of either a cocktail of 3 Salmonella isolates derived from ground chicken (GC) or a cocktail of 3 Salmonella strains not isolated from ground chicken (non‐GC). Bacteriophages were spread onto the chicken using sterile tap or filtered water for 30 min or 8 h. Salmonella was recovered using standard plating method. Greater Salmonella reduction was observed when the bacteriophage was diluted in sterile tap water than in sterile filtered water: 0.39 Log CFU/cm2 and 0.23 Log CFU/cm2 reduction after 30 min, respectively (P < 0.05). The non‐GC isolates showed reductions of 0.71 Log CFU/cm2 and 0.90 Log CFU/cm2 after 30 min and 8 h, respectively (P < 0.05). The GC isolates were less sensitive to the bacteriophage: 0.39 Log CFU/cm2 and 0.67 Log CFU/cm2 reductions after 30 min and 8 h, respectively (P < 0.05). In conclusion, bacteriophage reduction was dependent on water used to dilute the bacteriophage, Salmonellas susceptibility to the bacteriophage, and treatment time.


Journal of Food Protection | 2016

Application of Antimicrobial Agents via Commercial Spray Cabinet to Inactivate Salmonella on Skinless Chicken Meat

J. L. Hawkins; B. Vimini; J. G. Schwarz; P. Nichols; Salina Parveen

Salmonella enterica subsp. enterica serovar Typhimurium is a food safety concern for raw poultry products. New and innovative application methods of antimicrobials for the reduction of Salmonella in poultry and poultry products are essential. The aim of this study was to determine the efficacy of three antimicrobial compounds against Salmonella on raw chicken meat when applied individually and in combination using a commercial spray cabinet. Raw chicken thigh meat inoculated with 5 log CFU/g Salmonella Typhimurium ATCC 53647 was passed through a spray cabinet while being sprayed with 5% lauric arginate (LAE), 0.8% vinegar solution (VS), near-neutral electrolyzed water, or deionized water. The following three experiments were carried out: (i) exposure times of 0, 15, 30, 45, and 60 s, (ii) storage at 4°C for 0, 1, 2, and 3 days after a 60-s exposure, and (iii) a combination of treatment with LAE and VS followed by storage at 4°C for 0, 1, 2, and 3 days. Analysis of variance and the Tukey test were used to determine mean significant differences (P < 0.05). The experiment was carried out in duplicate for each replicate (n = 3 × 2). In comparing individual antimicrobials, the 60-s treatment time resulted in the greatest reduction of Salmonella Typhimurium, with LAE achieving the greatest reduction (2.07 log), followed by VS, near-neutral electrolyzed water, and deionized water (0.63, 0.56, and 0.53 log, respectively). After 3 days of storage, LAE significantly (P < 0.05) reduced Salmonella Typhimurium, by 1.28 log. The combination of VS and then LAE resulted in a significantly (P < 0.05) greater reduction than using LAE followed by VS (1.61 and 0.93 log, respectively). The results of this study suggest that LAE is a viable compound to reduce Salmonella Typhimurium on raw chicken meat and that the order of application of antimicrobial agents plays a vital role.

Collaboration


Dive into the Salina Parveen's collaboration.

Top Co-Authors

Avatar

Ligia V. DaSilva

University of Maryland Eastern Shore

View shared research outputs
Top Co-Authors

Avatar

Ml Tamplin

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Angelo DePaola

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

John C. Bowers

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Fawzy Hashem

University of Maryland Eastern Shore

View shared research outputs
Top Co-Authors

Avatar

Ar’Quette Grant

University of Maryland Eastern Shore

View shared research outputs
Top Co-Authors

Avatar

Jurgen Schwarz

University of Maryland Eastern Shore

View shared research outputs
Top Co-Authors

Avatar

Sara Elmahdi

University of Maryland Eastern Shore

View shared research outputs
Top Co-Authors

Avatar

Thomas Rippen

University of Maryland Eastern Shore

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge