Sallie Macy
University of Tennessee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sallie Macy.
American Journal of Clinical Pathology | 2001
Charles L. Murphy; Manfred Eulitz; Rudi Hrncic; Knut Sletten; Per Westermark; Teresa Williams; Sallie Macy; Craig Wooliver; Jonathan S. Wall; Deborah T. Weiss; Alan Solomon
The human amyloidoses represent a heterogeneous group of disorders characterized by the deposition of fibrillar protein in vital organs. Given the fact that at least 20 different molecules can form fibrils, the unambiguous identification of the type of amyloid deposited is critical to the correct diagnosis and treatment of patients with these disorders. Heretofore, this information has been inferred from particular clinical features of the disease, ancillary laboratory tests, and results of immunohistochemical analyses. However, to establish unequivocally the kind of protein that is deposited as amyloid, it is necessary to determine its chemical composition through amino acid sequencing or mass spectroscopy of material extracted from fibrillar deposits. We have developed a micromethod whereby such studies can be performed readily using sections of formalin-fixed, paraffin-embedded biopsy specimens. The ability to identify precisely the nature of the tissue deposits has diagnostic, therapeutic, and prognostic implications for patients with amyloid-associated disorders.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Jonathan S. Wall; Tina Richey; Robert L. Donnell; Sallie Macy; Emily B. Martin; Angela Williams; Keiichi Higuchi; Stephen J. Kennel
Heparan sulfate proteoglycans (HSPGs) are ubiquitous components of pathologic amyloid deposits in the organs of patients with disorders such as Alzheimers disease or systemic light chain (AL) or reactive (AA) amyloidosis. Molecular imaging methods for early detection are limited and generally unavailable outside the United Kingdom. Therefore, there is an urgent need to develop novel, specific amyloidophilic radiotracers for imaging to assist in diagnosis, prognostication, and monitoring response to therapy. Amyloid-associated HSPG can be differentiated from HSPG found in surrounding healthy cells and tissues by the preferential binding of certain HS-reactive single chain variable fragments and therefore, represents a biomarker that can be targeted specifically with appropriate reagents. Using a murine model of AA amyloidosis, we have examined the in vivo amyloid reactivity of seven heparin-binding peptides by using single photon emission and X-ray computed tomographic imaging, microautoradiography, and tissue biodistribution measurements. All of the peptides bound amyloid deposits within 1 h post-injection, but the extent of the reactivity differed widely, which was evidenced by image quality and grain density in autoradiographs. One radiolabeled peptide bound specifically to murine AA amyloid in the liver, spleen, kidney, adrenal, heart, and pancreas with such avidity that it was observed in single photon emission tomography images as late as 24 h post-injection. In addition, a biotinylated form of this peptide was shown histochemically to bind human AA, ALκ, ALλ, transthyretin amyloidosis (ATTR), and Aβ amyloid deposits in tissue sections. These basic heparin-binding peptides recognize murine and human amyloid deposits in both in vivo and ex vivo tissues and therefore, have potential as radiotracers for the noninvasive molecular imaging of amyloid deposits in situ.
Molecular Medicine | 2008
Daniel P. Kestler; James S. Foster; Sallie Macy; Charles L. Murphy; Deborah T. Weiss; Alan Solomon
We previously have communicated our discovery that the amyloid associated with calcifying epithelial odontogenic tumors is composed of N-terminal fragments of the structurally novel odontogenic ameloblast-associated protein designated ODAM. Subsequently, it was shown by other investigators that ODAM is expressed in rodent enamel organ and is likely involved in dental development. We now report that this molecule also is found in certain human tissues, principally the salivary gland and trachea, as evidenced by RNA array analysis and immunohistochemistry-utilizing antibodies prepared against synthetic ODAM-related peptides and recombinant protein. Notably, these reagents immunostained normal and malignant ameloblasts and other types of human neoplastic cells, including those of gastric, lung, and breast origin where the presence in the latter was confirmed by in situ hybridization using gene-specific molecular probes. Moreover, significant titers of anti-ODAM IgG antibodies were detected in the sera of patients with these malignancies. Our studies have provided the first evidence in humans for the cellular expression of ODAM in normal and diseased states. Based on our findings, we posit that ODAM is a developmental antigen that has an essential role in tooth maturation and in the pathogenesis of certain odontogenic and other epithelial neoplasms; further, we suggest that ODAM may serve as a novel prognostic biomarker, as well as a potential diagnostic and therapeutic target for patients with breast and other epithelial forms of cancer.
Cancer | 1981
Stephen Krauss; Sallie Macy; Albert T. Ichiki
Levels of immunoreactive ACTH and calcitonin (CT), as well as CEA, were determined serially in 144 patients with lung cancer and in 62 patients with metastatic carcinoma to the lungs. Patients with neoplasms not involving the lungs, with nonmalignant blood dyscrasias, and with chronic obstructive pulmonary disease were studied, as were normal control subjects.
PLOS ONE | 2012
Jonathan S. Wall; Stephen J. Kennel; Angela Williams; Tina Richey; Ying Huang; Sallie Macy; Robert L. Donnell; Robin Barbour; Peter Seubert; Dale Schenk
The monoclonal antibody 2A4 binds an epitope derived from a cleavage site of serum amyloid protein A (sAA) containing a -Glu-Asp- amino acid pairing. In addition to its reactivity with sAA amyloid deposits, the antibody was also found to bind amyloid fibrils composed of immunoglobulin light chains. The antibody binds to synthetic fibrils and human light chain (AL) amyloid extracts with high affinity even in the presence of soluble light chain proteins. Immunohistochemistry with biotinylated 2A4 demonstrated positive reaction with ALκ and ALλ human amyloid deposits in various organs. Surface plasmon resonance analyses using synthetic AL fibrils as a substrate revealed that 2A4 bound with a KD of ∼10 nM. Binding was inhibited in the presence of the –Glu-Asp- containing immunogen peptide. Radiolabeled 2A4 specifically localized with human AL amyloid extracts implanted in mice (amyloidomas) as evidenced by single photon emission (SPECT) imaging. Furthermore, co-localization of the radiolabeled mAb with amyloid was shown in biodistribution and micro-autoradiography studies. Treatment with 2A4 expedited regression of ALκ amyloidomas in mice, likely mediated by the action of macrophages and neutrophils, relative to animals that received a control antibody. These data indicate that the 2A4 mAb might be of interest for potential imaging and immunotherapy in patients with AL amyloidosis.
Amyloid | 2008
Charles L. Murphy; Daniel P. Kestler; James S. Foster; Shuching Wang; Sallie Macy; Stephen J. Kennel; Eric R. Carlson; John Hudson; Deborah T. Weiss; Alan Solomon
We have previously reported that the amyloid found in three patients with calcifying epithelial odontogenic tumors (CEOT) was composed of N-terminal fragments of a putative 153-residue protein specified by a gene designated FLJ20513 now known to represent exons 5 through 10 of the odontogenic ameloblast-associated protein (ODAM) locus that encodes a 279-residue polypeptide. Confirmation of the amyloidogenic potential of ODAM has resulted from analyses of four other cases where we found, in addition, a 74-residue segment specified by exon 4. Through preparation of ODAM-related synthetic peptides, it was possible to localize the fibril-forming region of this molecule, as well as generate a monoclonal antibody that reacted specifically with the amyloid associated with CEOT. Notably, we also detected green birefringent congophilic material in unerupted tooth follicles – a precursor of CEOT – and demonstrated through immunologic and chemical analyses the ODAM nature of the deposits. Our studies have provided further evidence for this unique form of odontogenic amyloid that we provisionally designate “AODAM”.
PLOS ONE | 2015
Helen P. McWilliams-Koeppen; James S. Foster; Nicole Hackenbrack; Marina Ramirez-Alvarado; Dallas Donohoe; Angela Williams; Sallie Macy; Craig Wooliver; Dale C. Wortham; Jennifer L. Morrell-Falvey; Carmen M. Foster; Stephen J. Kennel; Jonathan S. Wall
Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.
American Journal of Clinical Pathology | 2008
Sandra Davern; Lian X. Tang; Teresa Williams; Sallie Macy; Jonathan S. Wall; Deborah T. Weiss; Alan Solomon
Overproduction of plasma cell-derived monoclonal free kappa or lambda immunoglobulin light chains (FLCs) is a hallmark of multiple myeloma, AL amyloidosis, and light chain deposition disease. Because these components serve as unique cellular and serologic biomarkers, their detection and quantitation has diagnostic, therapeutic, and prognostic import. In this regard, we have developed monoclonal antibodies (mAbs) that specifically recognize the kappa or lambda FLC products of all known human variable and constant region light chain genes. We now report the results of our studies that have demonstrated the capability of these reagents to measure, in a modified fluid-phase capture enzyme-linked immunosorbent assay (ELISA), serum kappa and lambda FLCs at concentrations as low as 5 and 15 ng/mL, respectively. The mAb-based ELISA has greater sensitivity and reproducibility than does the commercially available immunoturbidimetric assay that uses polyclonal anti-FLC antibodies. In addition, the mAbs can immunostain monoclonal FLC-producing plasma cells and pathologic light chain-related amyloid and nonfibrillar tissue deposits. Our anti-FLC mAbs, with their high degree of reactivity and versatility, may provide an invaluable tool in the diagnosis and management of light chain-associated disease.
Molecules | 2015
Jonathan S. Wall; Emily B. Martin; Tina Richey; Sallie Macy; Craig Wooliver; Angela Williams; James S. Foster; Penney McWilliams-Koeppen; Ed Uberbacher; Xiaolin Cheng; Stephen J. Kennel
Amyloid is a complex pathologic matrix comprised principally of paracrystalline protein fibrils and heparan sulfate proteoglycans. Systemic amyloid diseases are rare, thus, routine diagnosis is often challenging. The glycosaminoglycans ubiquitously present in amyloid deposits are biochemically and electrochemically distinct from those found in the healthy tissues due to the high degree of sulfation. We have exploited this unique property and evaluated heparin-reactive peptides, such as p5+14, as novel agents for specifically targeting and imaging amyloid. Herein, we demonstrate that radiolabeled p5+14 effectively bound murine AA amyloid in vivo by using molecular imaging. Biotinylated peptide also reacted with the major forms of human amyloid in tissue sections as evidenced immunohistochemically. Furthermore, we have demonstrated that the peptide also binds synthetic amyloid fibrils that lack glycosaminoglycans implying that the dense anionic motif present on heparin is mimicked by the amyloid protein fibril itself. These biochemical and functional data support the translation of radiolabeled peptide p5+14 for the clinical imaging of amyloid in patients.
PLOS ONE | 2013
Jonathan S. Wall; Angela Williams; Tina Richey; Ying Huang; Craig Wooliver; Sallie Macy; Eric Heidel; Neil Gupta; Angela Lee; Brianna Rader; Emily B. Martin; Stephen J. Kennel
Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer’s disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant “binding site barrier” effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.