Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sally A. Mackenzie is active.

Publication


Featured researches published by Sally A. Mackenzie.


The Plant Cell | 1999

Higher Plant Mitochondria

Sally A. Mackenzie; Lee McIntosh

Over the past 20 years, researchers investigating the mitochondria of plants have been astonished by the phenomenal variation these organelles display relative to their mammalian and fungal counterparts. Plant mitochondria have evolved distinct strategies for genome maintenance, genetic decoding,


The Plant Cell | 2007

Plant Mitochondrial Recombination Surveillance Requires Unusual RecA and MutS Homologs

Vikas Shedge; Maria P. Arrieta-Montiel; Alan C. Christensen; Sally A. Mackenzie

For >20 years, the enigmatic behavior of plant mitochondrial genomes has been well described but not well understood. Chimeric genes appear, and occasionally are differentially replicated or expressed, with significant effects on plant phenotype, most notably on male fertility, yet the mechanisms of DNA replication, chimera formation, and recombination have remained elusive. Using mutations in two important genes of mitochondrial DNA metabolism, we have observed reproducible asymmetric recombination events occurring at specific locations in the mitochondrial genome. Based on these experiments and existing models of double-strand break repair, we propose a model for plant mitochondrial DNA replication, chimeric gene formation, and the illegitimate recombination events that lead to stoichiometric changes. We also address the physiological and developmental effects of aberrant events in mitochondrial genome maintenance, showing that mitochondrial genome rearrangements, when controlled, influence plant reproduction, but when uncontrolled, lead to aberrant growth phenotypes and dramatic reduction of the cell cycle.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS

Ricardo V. Abdelnoor; Ryan Yule; Annakaisa Elo; Alan C. Christensen; Gilbert Meyer-Gauen; Sally A. Mackenzie

The plant mitochondrial genome is retained in a multipartite structure that arises by a process of repeat-mediated homologous recombination. Low-frequency ectopic recombination also occurs, often producing sequence chimeras, aberrant ORFs, and novel subgenomic DNA molecules. This genomic plasticity may distinguish the plant mitochondrion from mammalian and fungal types. In plants, relative copy number of recombination-derived subgenomic DNA molecules within mitochondria is controlled by nuclear genes, and a genomic shifting process can result in their differential copy number suppression to nearly undetectable levels. We have cloned a nuclear gene that regulates mitochondrial substoichiometric shifting in Arabidopsis. The CHM gene was shown to encode a protein related to the MutS protein of Escherichia coli that is involved in mismatch repair and DNA recombination. We postulate that the process of substoichiometric shifting in plants may be a consequence of ectopic recombination suppression or replication stalling at ectopic recombination sites to effect molecule-specific copy number modulation.


The Plant Cell | 1998

Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility

Hanna Janska; Rodrigo Sarria; Magdalena Woloszynska; Maria P. Arrieta-Montiel; Sally A. Mackenzie

The plant mitochondrial genome is characterized by a complex, multipartite structure. In cytoplasmic male-sterile (CMS) common bean, the sterility-inducing mitochondrial configuration maps as three autonomous DNA molecules, one containing the sterility-associated sequence pvs-orf239. We constructed a physical map of the mitochondrial genome from the direct progenitors to the CMS cytoplasm and have shown that it maps as a single, circular master configuration. With long-exposure autoradiography of DNA gel blots and polymerase chain reaction analysis, we demonstrate that the three-molecule CMS-associated configuration was present at unusually low copy number within the progenitor genome and that the progenitor form was present substoichiometrically within the genome of the CMS line. Furthermore, upon spontaneous reversion to fertility, the progenitor genomic configuration as well as the molecule containing the pvs-orf239 sterility-associated sequence were both maintained at substoichiometric levels within the revertant genome. In vitro mitochondrial incubation results demonstrated that the genomic shift of the pvs-orf239–containing molecule to substoichiometric levels upon spontaneous reversion was a reversible phenomenon. Moreover, we demonstrate that substoichiometric forms, apparently silent with regard to gene expression, are transcriptionally and translationally active once amplified. Thus, copy number suppression may serve as an effective means of regulating gene expression in plant mitochondria.


The Plant Cell | 1990

Fertility restoration is associated with loss of a portion of the mitochondrial genome in cytoplasmic male-sterile common bean.

Sally A. Mackenzie; Christine D. Chase

Restoration of pollen fertility to cytoplasmic male-sterile common bean by nuclear gene Fr is accompanied by mitochondrial (mt) DNA rearrangements within restored plants. These rearrangements are also observed upon spontaneous cytoplasmic reversion to fertility. An mtDNA fragment of at least 25 kilobases was lost from the genome upon restoration or reversion. This fragment contained DNA segments that were not repeated elsewhere in the genome and, therefore, were not detected within the genome upon fertility restoration. This result suggested that the particular mtDNA configuration absent from restored plants could not be maintained by a constant process of recombination but rather by autonomous replication. No evidence of excision of this region from the mt genome, in the form of a junction fragment associating flanking DNA regions, was detected in fertile restored plants. DNA gel blot hybridization of this mtDNA region, compared with hybridization to related regions of the mitochondrial genome that shared sequence homology, indicated that the mtDNA region associated with sterility was present in lower copy number. These observations, as well as the occurrence of similar or identical rearrangements upon spontaneous cytoplasmic reversion, indicate that the restoration of pollen fertility may be accompanied by loss of an independently replicating subgenomic DNA molecule from the mitochondrial genome.


The Plant Cell | 1995

Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male-sterile bean.

Andre R. Abad; Brian J. Mehrtens; Sally A. Mackenzie

In common bean, cytoplasmic male sterility has been associated with a unique sequence found in the mitochondrial genome, designated pvs (for Phaseolus vulgaris sterility sequence). Within the pvs sequence, two open reading frames are encoded, ORF98 and ORF239. We have raised rabbit polyclonal antibodies against Pvs-ORF239 to evaluate the role of this putative male sterility-associated protein. Histological investigation of pollen development revealed that in the male-sterile bean line, callose deposition was abnormal and microspores remained as tetrads as previously reported. Pvs-ORF239 was found to be localized within the reproductive tissues of the male-sterile bean line, in contrast to all other cytoplasmic male sterility systems studied to date. This protein was associated with mitochondria, the callose layer, and developing primary cell walls during microsporogenesis. Expression of pvs-orf239 was not detected in fertile plants containing restorer gene Fr2. These observations, together with previous reports, suggest that nuclear restorer gene Fr2 interferes with expression of the pvs region post-transcriptionally.


The Plant Cell | 2005

Dual-Domain, Dual-Targeting Organellar Protein Presequences in Arabidopsis Can Use Non-AUG Start Codons

Alan C. Christensen; Anna Lyznik; Saleem Mohammed; Christian Elowsky; Annakaisa Elo; Ryan Yule; Sally A. Mackenzie

The processes accompanying endosymbiosis have led to a complex network of interorganellar protein traffic that originates from nuclear genes encoding mitochondrial and plastid proteins. A significant proportion of nucleus-encoded organellar proteins are dual targeted, and the process by which a protein acquires the capacity for both mitochondrial and plastid targeting may involve intergenic DNA exchange coupled with the incorporation of sequences residing upstream of the gene. We evaluated targeting and sequence alignment features of two organellar DNA polymerase genes from Arabidopsis thaliana. Within one of these two loci, protein targeting appeared to be plastidic when the 5′ untranslated leader region (UTR) was deleted and translation could only initiate at the annotated ATG start codon but dual targeted when the 5′ UTR was included. Introduction of stop codons at various sites within the putative UTR demonstrated that this region is translated and influences protein targeting capacity. However, no ATG start codon was found within this upstream, translated region, suggesting that translation initiates at a non-ATG start. We identified a CTG codon that likely accounts for much of this initiation. Investigation of the 5′ region of other nucleus-encoded organellar genes suggests that several genes may incorporate upstream sequences to influence targeting capacity. We postulate that a combination of intergenic recombination and some relaxation of constraints on translation initiation has acted in the evolution of protein targeting specificity for those proteins capable of functioning in both plastids and mitochondria.


BMC Biology | 2011

Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis

Jaime Davila; Maria P. Arrieta-Montiel; Yashitola Wamboldt; Jun Cao; Joerg Hagmann; Vikas Shedge; Ying Zhi Xu; Detlef Weigel; Sally A. Mackenzie

BackgroundThe mitochondrial genome of higher plants is unusually dynamic, with recombination and nonhomologous end-joining (NHEJ) activities producing variability in size and organization. Plant mitochondrial DNA also generally displays much lower nucleotide substitution rates than mammalian or yeast systems. Arabidopsis displays these features and expedites characterization of the mitochondrial recombination surveillance gene MSH1 (MutS 1 homolog), lending itself to detailed study of de novo mitochondrial genome activity. In the present study, we investigated the underlying basis for unusual plant features as they contribute to rapid mitochondrial genome evolution.ResultsWe obtained evidence of double-strand break (DSB) repair, including NHEJ, sequence deletions and mitochondrial asymmetric recombination activity in Arabidopsis wild-type and msh1 mutants on the basis of data generated by Illumina deep sequencing and confirmed by DNA gel blot analysis. On a larger scale, with mitochondrial comparisons across 72 Arabidopsis ecotypes, similar evidence of DSB repair activity differentiated ecotypes. Forty-seven repeat pairs were active in DNA exchange in the msh1 mutant. Recombination sites showed asymmetrical DNA exchange within lengths of 50- to 556-bp sharing sequence identity as low as 85%. De novo asymmetrical recombination involved heteroduplex formation, gene conversion and mismatch repair activities. Substoichiometric shifting by asymmetrical exchange created the appearance of rapid sequence gain and loss in association with particular repeat classes.ConclusionsExtensive mitochondrial genomic variation within a single plant species derives largely from DSB activity and its repair. Observed gene conversion and mismatch repair activity contribute to the low nucleotide substitution rates seen in these genomes. On a phenotypic level, these patterns of rearrangement likely contribute to the reproductive versatility of higher plants.


Nature Genetics | 2016

The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection.

Jinghua Yang; Dongyuan Liu; Xiaowu Wang; Changmian Ji; Feng Cheng; Baoning Liu; Zhongyuan Hu; Sheng Chen; Deepak Pental; Youhui Ju; Pu Yao; Xuming Li; Kun Xie; Jianhui Zhang; Jianlin Wang; Fan Liu; Weiwei Ma; Jannat Shopan; Hongkun Zheng; Sally A. Mackenzie; Mingfang Zhang

The Brassica genus encompasses three diploid and three allopolyploid genomes, but a clear understanding of the evolution of agriculturally important traits via polyploidy is lacking. We assembled an allopolyploid Brassica juncea genome by shotgun and single-molecule reads integrated to genomic and genetic maps. We discovered that the A subgenomes of B. juncea and Brassica napus each had independent origins. Results suggested that A subgenomes of B. juncea were of monophyletic origin and evolved into vegetable-use and oil-use subvarieties. Homoeolog expression dominance occurs between subgenomes of allopolyploid B. juncea, in which differentially expressed genes display more selection potential than neutral genes. Homoeolog expression dominance in B. juncea has facilitated selection of glucosinolate and lipid metabolism genes in subvarieties used as vegetables and for oil production. These homoeolog expression dominance relationships among Brassicaceae genomes have contributed to selection response, predicting the directional effects of selection in a polyploid crop genome.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants

Ajay Sandhu; Ricardo V. Abdelnoor; Sally A. Mackenzie

Stability of the mitochondrial genome is controlled by nuclear loci. In plants, nuclear genes suppress mitochondrial DNA rearrangements during development. One nuclear gene involved in this process is Msh1. Msh1 appears to be involved in the suppression of illegitimate recombination in plant mitochondria. To test the hypothesis that Msh1 disruption leads to the type of mitochondrial DNA rearrangements associated with naturally occurring cytoplasmic male sterility in plants, a transgenic approach for RNAi was used to modulate expression of Msh1 in tobacco and tomato. In both species, these experiments resulted in reproducible mitochondrial DNA rearrangements and a condition of male (pollen) sterility. The male sterility was, in each case, heritable, associated with normal female fertility, and apparently maternal in its inheritance. Segregation of the transgene did not reverse the male sterile phenotype, producing stable, nontransgenic male sterility. The reproducible transgenic induction of mitochondrial rearrangements in plants is unprecedented, providing a means to develop novel cytoplasmic male sterile lines for release as non-GMO or transgenic materials.

Collaboration


Dive into the Sally A. Mackenzie's collaboration.

Top Co-Authors

Avatar

Maria P. Arrieta-Montiel

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Yashitola Wamboldt

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Elowsky

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Robersy Sanchez

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Vikas Shedge

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Alan C. Christensen

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Gilles J. Basset

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hardik Kundariya

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge