Sally Ann Lynch
University College Dublin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sally Ann Lynch.
Nature Genetics | 2006
Yanick J. Crow; Bruce E. Hayward; Rekha Parmar; Peter Robins; Andrea Leitch; Manir Ali; Deborah N. Black; Hans van Bokhoven; Han G. Brunner; B.C.J. Hamel; Peter Corry; Frances Cowan; Suzanne Frints; Joerg Klepper; John H. Livingston; Sally Ann Lynch; R.F. Massey; Jean François Meritet; Jacques L. Michaud; Gérard Ponsot; Thomas Voit; Pierre Lebon; David T. Bonthron; Andrew P. Jackson; Deborah E. Barnes; Tomas Lindahl
Aicardi-Goutières syndrome (AGS) presents as a severe neurological brain disease and is a genetic mimic of the sequelae of transplacentally acquired viral infection. Evidence exists for a perturbation of innate immunity as a primary pathogenic event in the disease phenotype. Here, we show that TREX1, encoding the major mammalian 3′ → 5′ DNA exonuclease, is the AGS1 gene, and AGS-causing mutations result in abrogation of TREX1 enzyme activity. Similar loss of function in the Trex1−/− mouse leads to an inflammatory phenotype. Our findings suggest an unanticipated role for TREX1 in processing or clearing anomalous DNA structures, failure of which results in the triggering of an abnormal innate immune response.
American Journal of Human Genetics | 2008
Carsten Bergmann; Manfred Fliegauf; Nadina Ortiz Brüchle; Valeska Frank; Heike Olbrich; J. Kirschner; Bernhard Schermer; Ingolf Schmedding; Andreas Kispert; Bettina Kränzlin; Gudrun Nürnberg; Christian Becker; Tiemo Grimm; Gundula Girschick; Sally Ann Lynch; Peter Kelehan; Jan Senderek; Thomas J. Neuhaus; Thomas Stallmach; Hanswalter Zentgraf; Peter Nürnberg; Norbert Gretz; Cecilia Lo; Soeren S. Lienkamp; Tobias Schäfer; Gerd Walz; Thomas Benzing; Klaus Zerres; Heymut Omran
Many genetic diseases have been linked to the dysfunction of primary cilia, which occur nearly ubiquitously in the body and act as solitary cellular mechanosensory organelles. The list of clinical manifestations and affected tissues in cilia-related disorders (ciliopathies) such as nephronophthisis is broad and has been attributed to the wide expression pattern of ciliary proteins. However, little is known about the molecular mechanisms leading to this dramatic diversity of phenotypes. We recently reported hypomorphic NPHP3 mutations in children and young adults with isolated nephronophthisis and associated hepatic fibrosis or tapetoretinal degeneration. Here, we chose a combinatorial approach in mice and humans to define the phenotypic spectrum of NPHP3/Nphp3 mutations and the role of the nephrocystin-3 protein. We demonstrate that the pcy mutation generates a hypomorphic Nphp3 allele that is responsible for the cystic kidney disease phenotype, whereas complete loss of Nphp3 function results in situs inversus, congenital heart defects, and embryonic lethality in mice. In humans, we show that NPHP3 mutations can cause a broad clinical spectrum of early embryonic patterning defects comprising situs inversus, polydactyly, central nervous system malformations, structural heart defects, preauricular fistulas, and a wide range of congenital anomalies of the kidney and urinary tract (CAKUT). On the functional level, we show that nephrocystin-3 directly interacts with inversin and can inhibit like inversin canonical Wnt signaling, whereas nephrocystin-3 deficiency leads in Xenopus laevis to typical planar cell polarity defects, suggesting a role in the control of canonical and noncanonical (planar cell polarity) Wnt signaling.
Circulation | 2006
Florence Kyndt; Jean-Pierre Gueffet; Vincent Probst; Philippe Jaafar; Antoine Legendre; Françoise Le Bouffant; Claire Toquet; Estelle Roy; Lesley McGregor; Sally Ann Lynch; Ruth Newbury-Ecob; Vinh Tran; Ian Young; Jean-Noël Trochu; Hervé Le Marec; Jean-Jacques Schott
Background— Myxomatous dystrophy of the cardiac valves affects ≈3% of the population and remains one of the most common indications for valvular surgery. Familial inheritance has been demonstrated with autosomal and X-linked transmission, but no specific molecular abnormalities have been documented in isolated nonsyndromic forms. We have investigated the genetic causes of X-linked myxomatous valvular dystrophy (XMVD) previously mapped to chromosome Xq28. Methods and Results— A familial and genealogical survey led us to expand the size of a large, previously identified family affected by XMVD and to refine the XMVD locus to a 2.5-Mb region. A standard positional cloning approach identified a P637Q mutation in the filamin A (FLNA) gene in all affected members. Two other missense mutations (G288R and V711D) and a 1944-bp genomic deletion coding for exons 16 to 19 in the FLNA gene were identified in 3 additional, smaller, unrelated families affected by valvular dystrophy, which demonstrates the responsibility of FLNA as a cause of XMVD. Among carriers of FLNA mutation, the penetrance of the disease was complete in men and incomplete in women. Female carriers could be mildly affected, and the severity of the disease was highly variable among mutation carriers. Conclusions— Our data demonstrate that FLNA is the first gene known to cause isolated nonsyndromic MVD. This is the first step to understanding the pathophysiological mechanisms of the disease and to defining pathways that may lead to valvular dystrophy. Screening for FLNA mutations could be important for families affected by XMVD to provide adequate follow-up and genetic counseling.
Journal of Medical Genetics | 2000
Sally Ann Lynch; Ym Wang; Tom Strachan; John Burn; Susan Lindsay
Autosomal dominant sacral agenesis is characterised by a partial agenesis of the sacrum typically involving sacral vertebrae S2-S5 only. Associated features include anorectal malformation, a presacral mass, and urogenital malformation. Together, these features have been defined as the Currarino syndrome. Recently,HLXB9 has been identified as the major causative gene in Currarino syndrome allowing identification of asymptomatic heterozygotes. In this review, we have performed an analysis of medical publications, and our own additional cases, to identify the range of malformations and complications that occur. We have also estimated risks of malformation in heterozygotes by using Weinburgs proband method on families personally known to us in order to provide accurate genetic counselling information.
American Journal of Human Genetics | 2011
Carine Le Goff; Clémentine Mahaut; Lauren W. Wang; Slimane Allali; Avinash Abhyankar; Sacha A. Jensen; Louise Zylberberg; Gwenaëlle Collod-Béroud; Damien Bonnet; Yasemin Alanay; Angela F. Brady; Marie-Pierre Cordier; Koenraad Devriendt; David Geneviève; Pelin Özlem Simsek Kiper; Hiroshi Kitoh; Deborah Krakow; Sally Ann Lynch; Martine Le Merrer; André Mégarbané; Geert Mortier; Sylvie Odent; Michel Polak; Marianne Rohrbach; David Sillence; Irene Stolte-Dijkstra; Andrea Superti-Furga; David L. Rimoin; Vicken Topouchian; Sheila Unger
Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.
American Journal of Human Genetics | 2011
Jill Clayton-Smith; James O'Sullivan; Sarah B. Daly; Sanjeev Bhaskar; Ruth Day; Beverley Anderson; Anne K. Voss; Tim Thomas; Leslie G. Biesecker; Philip Smith; Alan Fryer; Kate Chandler; Bronwyn Kerr; May Tassabehji; Sally Ann Lynch; Małgorzata Krajewska-Walasek; Shane McKee; Janine Smith; Elizabeth Sweeney; Sahar Mansour; Shehla Mohammed; Dian Donnai; Graeme C.M. Black
Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS or Ohdo syndrome) is a multiple anomaly syndrome characterized by severe intellectual disability, blepharophimosis, and a mask-like facial appearance. A number of individuals with SBBYSS also have thyroid abnormalities and cleft palate. The condition usually occurs sporadically and is therefore presumed to be due in most cases to new dominant mutations. In individuals with SBBYSS, a whole-exome sequencing approach was used to demonstrate de novo protein-truncating mutations in the highly conserved histone acetyltransferase gene KAT6B (MYST4/MORF)) in three out of four individuals sequenced. Sanger sequencing was used to confirm truncating mutations of KAT6B, clustering in the final exon of the gene in all four individuals and in a further nine persons with typical SBBYSS. Where parental samples were available, the mutations were shown to have occurred de novo. During mammalian development KAT6B is upregulated specifically in the developing central nervous system, facial structures, and limb buds. The phenotypic features seen in the Qkf mouse, a hypomorphic Kat6b mutant, include small eyes, ventrally placed ears and long first digits that mirror the human phenotype. This is a further example of how perturbation of a protein involved in chromatin modification might give rise to a multisystem developmental disorder.
Nature Genetics | 2013
Vikram P Sharma; Aimée L. Fenwick; Mia S Brockop; Simon J. McGowan; Jacqueline A.C. Goos; A. Jeannette M. Hoogeboom; Angela F. Brady; Nu Owase Jeelani; Sally Ann Lynch; John B. Mulliken; Dylan J. Murray; Julie M Phipps; Elizabeth Sweeney; Susan Tomkins; Louise C. Wilson; Sophia Bennett; Richard J. Cornall; John Broxholme; Alexander Kanapin; David W. Johnson; Steven A. Wall; Peter J. van der Spek; Irene M.J. Mathijssen; Robert Maxson; Stephen R.F. Twigg; Andrew O.M. Wilkie
Craniosynostosis, the premature fusion of the cranial sutures, is a heterogeneous disorder with a prevalence of ∼1 in 2,200 (refs. 1,2). A specific genetic etiology can be identified in ∼21% of cases, including mutations of TWIST1, which encodes a class II basic helix-loop-helix (bHLH) transcription factor, and causes Saethre-Chotzen syndrome, typically associated with coronal synostosis. Using exome sequencing, we identified 38 heterozygous TCF12 mutations in 347 samples from unrelated individuals with craniosynostosis. The mutations predominantly occurred in individuals with coronal synostosis and accounted for 32% and 10% of subjects with bilateral and unilateral pathology, respectively. TCF12 encodes one of three class I E proteins that heterodimerize with class II bHLH proteins such as TWIST1. We show that TCF12 and TWIST1 act synergistically in a transactivation assay and that mice doubly heterozygous for loss-of-function mutations in Tcf12 and Twist1 have severe coronal synostosis. Hence, the dosage of TCF12-TWIST1 heterodimers is critical for normal coronal suture development.
European Journal of Human Genetics | 2012
Siddharth Banka; Ratna Veeramachaneni; William Reardon; Emma Howard; Sancha Bunstone; Nicola Ragge; Michael J. Parker; Yanick J. Crow; Bronwyn Kerr; Helen Kingston; Kay Metcalfe; Kate Chandler; Alex Magee; Fiona Stewart; Vivienne McConnell; Deirdre E. Donnelly; Siren Berland; Gunnar Houge; Jenny Morton; Christine Oley; Nicole Revencu; Soo Mi Park; Sally Davies; Andrew E. Fry; Sally Ann Lynch; Harinder Gill; Susann Schweiger; Wayne W K Lam; John Tolmie; Shehla Mohammed
MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients.
Journal of Medical Genetics | 2014
Morad Ansari; G Poke; Quentin Rv Ferry; Kathleen A. Williamson; R. B. Aldridge; Alison Meynert; Hemant Bengani; C Y Chan; Hülya Kayserili; Ş Avci; Hennekam Rcm.; Anne K. Lampe; Egbert J. W. Redeker; Tessa Homfray; Allyson Ross; M F Smeland; Sahar Mansour; Michael J. Parker; Jackie Cook; Miranda Splitt; Robert B. Fisher; Alan Fryer; Alex Magee; Andrew O.M. Wilkie; A. Barnicoat; Angela F. Brady; Nicola S. Cooper; Catherine Mercer; Charu Deshpande; Christopher Bennett
Background Cornelia de Lange syndrome (CdLS) is a multisystem disorder with distinctive facial appearance, intellectual disability and growth failure as prominent features. Most individuals with typical CdLS have de novo heterozygous loss-of-function mutations in NIPBL with mosaic individuals representing a significant proportion. Mutations in other cohesin components, SMC1A, SMC3, HDAC8 and RAD21 cause less typical CdLS. Methods We screened 163 affected individuals for coding region mutations in the known genes, 90 for genomic rearrangements, 19 for deep intronic variants in NIPBL and 5 had whole-exome sequencing. Results Pathogenic mutations [including mosaic changes] were identified in: NIPBL 46 [3] (28.2%); SMC1A 5 [1] (3.1%); SMC3 5 [1] (3.1%); HDAC8 6 [0] (3.6%) and RAD21 1 [0] (0.6%). One individual had a de novo 1.3 Mb deletion of 1p36.3. Another had a 520 kb duplication of 12q13.13 encompassing ESPL1, encoding separase, an enzyme that cleaves the cohesin ring. Three de novo mutations were identified in ANKRD11 demonstrating a phenotypic overlap with KBG syndrome. To estimate the number of undetected mosaic cases we used recursive partitioning to identify discriminating features in the NIPBL-positive subgroup. Filtering of the mutation-negative group on these features classified at least 18% as ‘NIPBL-like’. A computer composition of the average face of this NIPBL-like subgroup was also more typical in appearance than that of all others in the mutation-negative group supporting the existence of undetected mosaic cases. Conclusions Future diagnostic testing in ‘mutation-negative’ CdLS thus merits deeper sequencing of multiple DNA samples derived from different tissues.
Human Mutation | 2010
Jennifer J. Johnston; Julie C. Sapp; Joyce T. Turner; David J. Amor; Salim Aftimos; Kyrieckos A. Aleck; Maureen Bocian; Joann Bodurtha; Gerald F. Cox; Cynthia J. Curry; Ruth Day; Dian Donnai; Michael Field; Ikuma Fujiwara; Michael T. Gabbett; Moran Gal; John M. Graham; Peter Hedera; Raoul C. M. Hennekam; Joseph H. Hersh; Robert J. Hopkin; Hülya Kayserili; Alexa Kidd; Virginia E. Kimonis; Angela E. Lin; Sally Ann Lynch; Melissa Maisenbacher; Sahar Mansour; Julie McGaughran; Lakshmi Mehta
A range of phenotypes including Greig cephalopolysyndactyly and Pallister‐Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty‐one probands with typical GCPS or PHS were previously reported, and we report the remaining 93 probands here. This includes 19 probands (12 mutations) who fulfilled clinical criteria for GCPS or PHS, 48 probands (16 mutations) with features of GCPS or PHS but who did not meet the clinical criteria (sub‐GCPS and sub‐PHS), 21 probands (6 mutations) with features of PHS or GCPS and oral‐facial‐digital syndrome, and 5 probands (1 mutation) with nonsyndromic polydactyly. These data support previously identified genotype–phenotype correlations and demonstrate a more variable degree of severity than previously recognized. The finding of GLI3 mutations in patients with features of oral–facial–digital syndrome supports the observation that GLI3 interacts with cilia. We conclude that the phenotypic spectrum of GLI3 mutations is broader than that encompassed by the clinical diagnostic criteria, but the genotype–phenotype correlation persists. Individuals with features of either GCPS or PHS should be screened for mutations in GLI3 even if they do not fulfill clinical criteria. Hum Mutat 31:1142–1154, 2010.