Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sally Chiu is active.

Publication


Featured researches published by Sally Chiu.


Journal of Clinical Investigation | 2009

Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans

Kimber L. Stanhope; Jean-Marc Schwarz; Nancy L. Keim; Steven C. Griffen; Andrew A. Bremer; James L. Graham; Bonnie Hatcher; Chad L. Cox; Artem Dyachenko; Wei Zhang; John P. McGahan; Anthony Seibert; Ronald M. Krauss; Sally Chiu; Ernst J. Schaefer; Masumi Ai; Seiko Otokozawa; Katsuyuki Nakajima; Carine Beysen; Marc K. Hellerstein; Lars Berglund; Peter J. Havel

Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle-triglyceride and -cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults.


Annual Review of Nutrition | 2015

Saturated Fats Versus Polyunsaturated Fats Versus Carbohydrates for Cardiovascular Disease Prevention and Treatment

Patty W. Siri-Tarino; Sally Chiu; Nathalie Bergeron; Ronald M. Krauss

The effects of saturated fatty acids (SFAs) on cardiovascular disease (CVD) risk are modulated by the nutrients that replace them and their food matrices. Replacement of SFAs with polyunsaturated fatty acids has been associated with reduced CVD risk, although there is heterogeneity in both fatty acid categories. In contrast, replacement of SFAs with carbohydrates, particularly sugar, has been associated with no improvement or even a worsening of CVD risk, at least in part through effects on atherogenic dyslipidemia, a cluster of traits including small, dense low-density lipoprotein particles. The effects of dietary SFAs on insulin sensitivity, inflammation, vascular function, and thrombosis are less clear. There is growing evidence that SFAs in the context of dairy foods, particularly fermented dairy products, have neutral or inverse associations with CVD. Overall dietary patterns emphasizing vegetables, fish, nuts, and whole versus processed grains form the basis of heart-healthy eating and should supersede a focus on macronutrient composition.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Overactive endocannabinoid signaling impairs apolipoprotein E-mediated clearance of triglyceride-rich lipoproteins

Maxwell A. Ruby; Daniel K. Nomura; Carolyn S.S. Hudak; Lara M. Mangravite; Sally Chiu; John E. Casida; Ronald M. Krauss

The endocannabinoid (EC) system regulates food intake and energy metabolism. Cannabinoid receptor type 1 (CB1) antagonists show promise in the treatment of obesity and its metabolic consequences. Although the reduction in adiposity resulting from therapy with CB1 antagonists may not account fully for the concomitant improvements in dyslipidemia, direct effects of overactive EC signaling on plasma lipoprotein metabolism have not been documented. The present study used a chemical approach to evaluate the direct effects of increased EC signaling in mice by inducing acute elevations of endogenously produced cannabinoids through pharmacological inhibition of their enzymatic hydrolysis by isopropyl dodecylfluorophosphonate (IDFP). Acute IDFP treatment increased plasma levels of triglyceride (TG) (2.0- to 3.1-fold) and cholesterol (1.3- to 1.4-fold) in conjunction with an accumulation in plasma of apolipoprotein (apo)E-depleted TG-rich lipoproteins. These changes did not occur in either CB1-null or apoE-null mice, were prevented by pretreatment with CB1 antagonists, and were not associated with reduced hepatic apoE gene expression. Although IDFP treatment increased hepatic mRNA levels of lipogenic genes (Srebp1 and Fas), there was no effect on TG secretion into plasma. Instead, IDFP treatment impaired clearance of an intravenously administered TG emulsion, despite increased postheparin lipoprotein lipase activity. Therefore, overactive EC signaling elicits an increase in plasma triglyceride levels associated with reduced plasma TG clearance and an accumulation in plasma of apoE-depleted TG-rich lipoproteins. These findings suggest a role of CB1 activation in the pathogenesis of obesity-related hypertriglyceridemia and underscore the potential efficacy of CB1 antagonists in treating metabolic disease.


The American Journal of Clinical Nutrition | 2016

Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: a randomized controlled trial

Sally Chiu; Nathalie Bergeron; Paul T Williams; George A. Bray; Barbara Sutherland; Ronald M. Krauss

BACKGROUND The DASH (Dietary Approaches to Stop Hypertension) dietary pattern, which is high in fruit, vegetables, and low-fat dairy foods, significantly lowers blood pressure as well as low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol. OBJECTIVE The study was designed to test the effects of substituting full-fat for low-fat dairy foods in the DASH diet, with a corresponding increase in fat and a reduction in sugar intake, on blood pressure and plasma lipids and lipoproteins. DESIGN This was a 3-period randomized crossover trial in free-living healthy individuals who consumed in random order a control diet, a standard DASH diet, and a higher-fat, lower-carbohydrate modification of the DASH diet (HF-DASH diet) for 3 wk each, separated by 2-wk washout periods. Laboratory measurements, which included lipoprotein particle concentrations determined by ion mobility, were made at the end of each experimental diet. RESULTS Thirty-six participants completed all 3 dietary periods. Blood pressure was reduced similarly with the DASH and HF-DASH diets compared with the control diet. The HF-DASH diet significantly reduced triglycerides and large and medium very-low-density lipoprotein (VLDL) particle concentrations and increased LDL peak particle diameter compared with the DASH diet. The DASH diet, but not the HF-DASH diet, significantly reduced LDL cholesterol, HDL cholesterol, apolipoprotein A-I, intermediate-density lipoprotein and large LDL particles, and LDL peak diameter compared with the control diet. CONCLUSIONS The HF-DASH diet lowered blood pressure to the same extent as the DASH diet but also reduced plasma triglyceride and VLDL concentrations without significantly increasing LDL cholesterol. This trial was registered at clinicaltrials.gov as NCT01404897.


Genetics | 2004

Characterization of epistasis influencing complex spontaneous obesity in the BSB model.

Nengjun Yi; Adam L. Diament; Sally Chiu; Kyoungmi Kim; David B. Allison; Janis S. Fisler; Craig H. Warden

There is growing awareness that complex interactions among multiple genes and environmental factors play an important role in controlling obesity traits. The BSB mouse, which is produced by the backcross of (lean C57BL/6J × lean Mus spretus) × C57BL/6J, provides an excellent model of epistatic obesity. To evaluate potential epistatic interactions among six chromosomal regions previously determined to influence obesity phenotypes, we performed novel Bayesian analyses on the basis of both epistatic and nonepistatic models for four obesity traits: percentage of body fat, adiposity index, total fat mass, and body weight, and also for plasma total cholesterol. The epistatic analysis detected at least one more QTL than the nonepistatic analysis did for all obesity traits. These obesity traits were variously influenced by QTL on chromosomes 2, 7, 12, 15, and 16. Interaction between genes on chromosomes 2 and 12 was present for all obesity traits, accounting for 3–4.8% of the phenotypic variation. Chromosome 12 was found to have weak main effects on all obesity traits. Several different epistatic interactions were also detected for percentage of body fat, adiposity index, and total fat mass. Chromosomes 6 and 12 have not only main effects but also strong epistatic effects on plasma total cholesterol. Our results emphasize the importance of modeling epistasis for discovery of obesity genes.


Journal of Nutrition | 2014

Diets High in Protein or Saturated Fat Do Not Affect Insulin Sensitivity or Plasma Concentrations of Lipids and Lipoproteins in Overweight and Obese Adults

Sally Chiu; Paul T. Williams; Taylor Dawson; Richard N. Bergman; Darko Stefanovski; Steven M. Watkins; Ronald M. Krauss

BACKGROUND Previous human studies reported inconsistent effects of dietary protein and branched-chain amino acids (BCAAs) on insulin action and glucose metabolism. Similarly, it is unclear whether saturated fat (SF) intake influences these metabolic variables. OBJECTIVE The objective of this study was to test the effects of high [30% of energy (%E)] vs. moderate (20%E) intakes of protein (primarily whey) on insulin action and lipid and lipoprotein concentrations in the context of both high (15%E) and low (7%E) SF diets. METHODS The study was conducted as a randomized controlled trial in 158 overweight and obese men and women. After a 4-wk baseline diet [55%E carbohydrate, 15%E protein, 30%E fat (7%E SF)], participants were randomly assigned to 4 wk of either the baseline diet or 1 of 4 test diets containing 35%E carbohydrate and either 20%E or 30%E protein and either 7%E or 15%E SF. Frequently sampled i.v. glucose tolerance tests were administered after each dietary period. RESULTS Other than significantly higher fasting glucose concentrations for high vs. moderate protein intakes with a low-fat diet (difference ± SE: 0.47 ± 0.14 mmol/L; P = 0.001), there were no significant effects of dietary protein or SF on glucose metabolism, plasma insulin, or concentrations of lipids and lipoproteins. Changes in plasma BCAAs across all diets were negatively correlated with changes in the metabolic clearance rate of insulin (ρ = -0.18, P = 0.03) and positively correlated with changes in the acute insulin response to glucose (ρ = 0.15, P = 0.05). CONCLUSIONS These findings suggest that short-term intake of BCAAs can influence insulin dynamics. However, in this group of overweight and obese individuals, neither high protein nor SF intake affected insulin sensitivity or plasma concentrations of lipids and lipoproteins. This trial was registered at clinicaltrials.gov as NCT00508937.


Journal of Nutrition | 2011

Changes in atherogenic dyslipidemia induced by carbohydrate restriction in men are dependent on dietary protein source.

Lara M. Mangravite; Sally Chiu; Kathleen Wojnoonski; Robin S. Rawlings; Nathalie Bergeron; Ronald M. Krauss

Previous studies have shown that multiple features of atherogenic dyslipidemia are improved by replacement of dietary carbohydrate with mixed sources of protein and that these lipid and lipoprotein changes are independent of dietary saturated fat content. Because epidemiological evidence suggests that red meat intake may adversely affect cardiovascular disease risk, we tested the effects of replacing dietary carbohydrate with beef protein in the context of high- vs. low-saturated fat intake in 40 healthy men. After a 3-wk baseline diet [50% daily energy (E) as carbohydrate, 13% E as protein, 15% E as saturated fat], participants consumed for 3 wk each in a randomized crossover design two high-beef diets in which protein replaced carbohydrate (31% E as carbohydrate, 31% E as protein, with 10% E as beef protein). The high-beef diets differed in saturated fat content (8% E vs. 15% E with exchange of saturated for monounsaturated fat). Two-week washout periods were included following the baseline diet period and between the randomized diets periods. Plasma TG concentrations were reduced after the 2 lower carbohydrate dietary periods relative to after the baseline diet period and these reductions were independent of saturated fat intake. Plasma total, LDL, and non-HDL cholesterol as well as apoB concentrations were lower after the low-carbohydrate, low-saturated fat diet period than after the low-carbohydrate, high-saturated fat diet period. Given our previous observations with mixed protein diets, the present findings raise the possibility that dietary protein source may modify the effects of saturated fat on atherogenic lipoproteins.


Scientific Reports | 2017

Odd Chain Fatty Acids; New Insights of the Relationship Between the Gut Microbiota, Dietary Intake, Biosynthesis and Glucose Intolerance

Benjamin Jenkins; Kevin Seyssel; Sally Chiu; Pin-Ho Pan; Shih-Yi Lin; Elizabeth Stanley; Zsuzsanna Ament; James West; Keith Summerhill; Julian L. Griffin; Walter Vetter; Kaija J. Autio; Kalervo Hiltunen; Stéphane Hazebrouck; Renata Stepankova; Chun-Jung Chen; M. Alligier; Martine Laville; Mary Courtney Moore; Guillaume Kraft; Alan D. Cherrington; Sarah King; Ronald M. Krauss; Evelyn De Schryver; Paul P. Van Veldhoven; Martin Ronis; Albert Koulman

Recent findings have shown an inverse association between circulating C15:0/C17:0 fatty acids with disease risk, therefore, their origin needs to be determined to understanding their role in these pathologies. Through combinations of both animal and human intervention studies, we comprehensively investigated all possible contributions of these fatty acids from the gut-microbiota, the diet, and novel endogenous biosynthesis. Investigations included an intestinal germ-free study and a C15:0/C17:0 diet dose response study. Endogenous production was assessed through: a stearic acid infusion, phytol supplementation, and a Hacl1−/− mouse model. Two human dietary intervention studies were used to translate the results. Finally, a study comparing baseline C15:0/C17:0 with the prognosis of glucose intolerance. We found that circulating C15:0/C17:0 levels were not influenced by the gut-microbiota. The dose response study showed C15:0 had a linear response, however C17:0 was not directly correlated. The phytol supplementation only decreased C17:0. Stearic acid infusion only increased C17:0. Hacl1−/− only decreased C17:0. The glucose intolerance study showed only C17:0 correlated with prognosis. To summarise, circulating C15:0 and C17:0 are independently derived; C15:0 correlates directly with dietary intake, while C17:0 is substantially biosynthesized, therefore, they are not homologous in the aetiology of metabolic disease. Our findings emphasize the importance of the biosynthesis of C17:0 and recognizing its link with metabolic disease.


PLOS ONE | 2017

Effects of a very high saturated fat diet on LDL particles in adults with atherogenic dyslipidemia: A randomized controlled trial

Sally Chiu; Paul T Williams; Ronald M. Krauss

Background Previous studies have shown that increases in LDL-cholesterol resulting from substitution of dietary saturated fat for carbohydrate or unsaturated fat are due primarily to increases in large cholesterol-enriched LDL, with minimal changes in small, dense LDL particles and apolipoprotein B. However, individuals can differ by their LDL particle distribution, and it is possible that this may influence LDL subclass response. Objective The objective of this study was to test whether the reported effects of saturated fat apply to individuals with atherogenic dyslipidemia as characterized by a preponderance of small LDL particles (LDL phenotype B). Methods Fifty-three phenotype B men and postmenopausal women consumed a baseline diet (55%E carbohydrate, 15%E protein, 30%E fat, 8%E saturated fat) for 3 weeks, after which they were randomized to either a moderate carbohydrate, very high saturated fat diet (HSF; 39%E carbohydrate, 25%E protein, 36%E fat, 18%E saturated fat) or low saturated fat diet (LSF; 37%E carbohydrate, 25%E protein, 37%E fat, 9%E saturated fat) for 3 weeks. Results Compared to the LSF diet, consumption of the HSF diet resulted in significantly greater increases from baseline (% change; 95% CI) in plasma concentrations of apolipoprotein B (HSF vs. LSF: 9.5; 3.6 to 15.7 vs. -6.8; -11.7 to -1.76; p = 0.0003) and medium (8.8; -1.3 to 20.0 vs. -7.3; -15.7 to 2.0; p = 0.03), small (6.1; -10.3 to 25.6 vs. -20.8; -32.8 to -6.7; p = 0.02), and total LDL (3.6; -3.2 to 11.0 vs. -7.9; -13.9 to -1.5; p = 0.03) particles, with no differences in change of large and very small LDL concentrations. As expected, total-cholesterol (11.0; 6.5 to 15.7 vs. -5.7; -9.4 to -1.8; p<0.0001) and LDL-cholesterol (16.7; 7.9 to 26.2 vs. -8.7; -15.4 to -1.4; p = 0.0001) also increased with increased saturated fat intake. Conclusions Because medium and small LDL particles are more highly associated with cardiovascular disease than are larger LDL, the present results suggest that very high saturated fat intake may increase cardiovascular disease risk in phenotype B individuals. This trial was registered at clinicaltrials.gov (NCT00895141). Trial registration Clinicaltrials.gov NCT00895141.


PLOS ONE | 2012

CNR1 genotype influences HDL-cholesterol response to change in dietary fat intake.

Heidi J. Silver; Kevin D. Niswender; Charles D. Keil; Lan Jiang; QiPing Feng; Sally Chiu; Ronald M. Krauss; Russell A. Wilke

Background Success in further reducing the burden of cardiovascular disease (CVD) is threatened by the increasing prevalence of obesity-related atherogenic dyslipidemia. HDL-cholesterol (HDL-C) level is inversely correlated with CVD risk; each 1 mg/dl decrease in HDL-C is associated with a 6% reduction in risk. We previously showed that a common CNR1 haplotype, H3 (frequency 20%), is protective against the reduction in HDL-C that typically accompanies weight gain. In the present study, we extend that observation by reporting the effect of CNR1 haplotype on HDL-C response to modification of dietary fat intake in weight maintenance and weight loss. Methods Six haplotype tagging SNPs that cover the CNR1 gene locus were genotyped in 590 adults of varying body mass index (cohort 1 is 411 males with BMI 18.5–30.0 kg/m2; cohort 2 is 71 females with BMI18.5–30.0 kg/m2; and cohort 3 is 108 females with BMI 30–39.9 kg/m2). Dietary intakes were modified so that fat intake in the “high fat” condition was 15–20% greater than in the “low fat” condition, and lipid profiles were compared between carriers versus noncarriers for each of the five commonly observed CNR1 haplotypes (H1–H5). Results In normal to overweight subjects on eucaloric diets, the H3 haplotype was significantly associated with short-term high fat diet induced changes in HDL-C level in females (carriers 5.9 mg/dl>noncarriers, p = 0.007). The H3 haplotype was also significantly associated with HDL-C level after 16 weeks on high fat calorie restricted diet in obese females (carriers 6.8 mg/dl>noncarriers, p = 0.009). Conclusion Variability within the CNR1 gene locus contributes to gender-related differences in the HDL-cholesterol response to change in dietary fat intake. Functional characterization of this relationship in vitro may offer insights that potentially yield therapeutic guidance targeting dietary macronutrient composition, a direction much needed in the current epidemic of obesity.

Collaboration


Dive into the Sally Chiu's collaboration.

Top Co-Authors

Avatar

Ronald M. Krauss

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Allison

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyoungmi Kim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nengjun Yi

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge