Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sally Feather is active.

Publication


Featured researches published by Sally Feather.


The New England Journal of Medicine | 2009

Epilepsy, Ataxia, Sensorineural Deafness, Tubulopathy, and KCNJ10 Mutations

Detlef Bockenhauer; Sally Feather; Horia Stanescu; Sascha Bandulik; Anselm A. Zdebik; Markus Reichold; Jonathan Tobin; Evelyn Lieberer; Christina Sterner; Guida Landouré; Ruchi Arora; Tony Sirimanna; Dorothy A. Thompson; J. Helen Cross; William van’t Hoff; Omar Al Masri; Kjell Tullus; Stella Yeung; Yair Anikster; Enriko Klootwijk; Mike Hubank; Michael J. Dillon; Dirk Heitzmann; Mauricio Arcos-Burgos; Mark A. Knepper; Angus Dobbie; William A. Gahl; Richard Warth; Eamonn Sheridan; Robert Kleta

BACKGROUND Five children from two consanguineous families presented with epilepsy beginning in infancy and severe ataxia, moderate sensorineural deafness, and a renal salt-losing tubulopathy with normotensive hypokalemic metabolic alkalosis. We investigated the genetic basis of this autosomal recessive disease, which we call the EAST syndrome (the presence of epilepsy, ataxia, sensorineural deafness, and tubulopathy). METHODS Whole-genome linkage analysis was performed in the four affected children in one of the families. Newly identified mutations in a potassium-channel gene were evaluated with the use of a heterologous expression system. Protein expression and function were further investigated in genetically modified mice. RESULTS Linkage analysis identified a single significant locus on chromosome 1q23.2 with a lod score of 4.98. This region contained the KCNJ10 gene, which encodes a potassium channel expressed in the brain, inner ear, and kidney. Sequencing of this candidate gene revealed homozygous missense mutations in affected persons in both families. These mutations, when expressed heterologously in xenopus oocytes, caused significant and specific decreases in potassium currents. Mice with Kcnj10 deletions became dehydrated, with definitive evidence of renal salt wasting. CONCLUSIONS Mutations in KCNJ10 cause a specific disorder, consisting of epilepsy, ataxia, sensorineural deafness, and tubulopathy. Our findings indicate that KCNJ10 plays a major role in renal salt handling and, hence, possibly also in blood-pressure maintenance and its regulation.


Journal of The American Society of Nephrology | 2007

Mineral Metabolism and Vascular Damage in Children on Dialysis

Rukshana Shroff; Ann E. Donald; Melanie P. Hiorns; Alan Watson; Sally Feather; David V. Milford; Elizabeth Ellins; Clare Storry; Deborah Ridout; John E. Deanfield; Lesley Rees

Cardiovascular disease is increasingly recognized as a life-limiting problem in young patients with chronic kidney disease, but there are few studies in children that describe its determinants. We studied the association of intact parathyroid hormone (iPTH) levels and their management on vascular structure and function in 85 children, ages 5-18 years, who had received dialysis for > or =6 months. Compared to controls, dialysis patients had increased carotid intima-media thickness and pulse-wave velocity. All vascular measures positively correlated with serum phosphorus levels, while carotid intima-media thickness and cardiac calcification score also correlated with iPTH levels. Patients with mean time-integrated iPTH levels less than twice the upper limit of normal (n = 41) had vascular measures that were comparable to age-matched controls, but those with iPTH levels greater than twice the upper limit of normal (n = 44) had greater carotid intima-media thickness, stiffer vessels, and increased cardiac calcification than controls. Patients with increased carotid intima-media thickness had stiffer vessels and a greater prevalence of cardiac calcification. There was a strong dose-dependent correlation between vitamin D and all vascular measures, and calcium intake from phosphate binders weakly correlated with carotid intima-media thickness. In conclusion, both iPTH level and dosage of vitamin D are associated with vascular damage and calcification in children on dialysis.


American Journal of Human Genetics | 2007

Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux

Weining Lu; Albertien M. van Eerde; Xueping Fan; Fabiola Quintero-Rivera; Shashikant Kulkarni; Heather L. Ferguson; Hyung Goo Kim; Yanli Fan; Qiongchao Xi; Qing Gang Li; Damien Sanlaville; William Andrews; Vasi Sundaresan; Weimin Bi; Jiong Yan; Jacques C. Giltay; Cisca Wijmenga; Tom P.V.M. de Jong; Sally Feather; Adrian S. Woolf; Yi Rao; James R. Lupski; Michael R. Eccles; Bradley J. Quade; James F. Gusella; Cynthia C. Morton; Richard L. Maas

Congenital anomalies of the kidney and urinary tract (CAKUT) include vesicoureteral reflux (VUR). VUR is a complex, genetically heterogeneous developmental disorder characterized by the retrograde flow of urine from the bladder into the ureter and is associated with reflux nephropathy, the cause of 15% of end-stage renal disease in children and young adults. We investigated a man with a de novo translocation, 46,X,t(Y;3)(p11;p12)dn, who exhibits multiple congenital abnormalities, including severe bilateral VUR with ureterovesical junction defects. This translocation disrupts ROBO2, which encodes a transmembrane receptor for SLIT ligand, and produces dominant-negative ROBO2 proteins that abrogate SLIT-ROBO signaling in vitro. In addition, we identified two novel ROBO2 intracellular missense variants that segregate with CAKUT and VUR in two unrelated families. Adult heterozygous and mosaic mutant mice with reduced Robo2 gene dosage also exhibit striking CAKUT-VUR phenotypes. Collectively, these results implicate the SLIT-ROBO signaling pathway in the pathogenesis of a subset of human VUR.


Journal of The American Society of Nephrology | 2004

OFD1 Is a Centrosomal/Basal Body Protein Expressed during Mesenchymal-Epithelial Transition in Human Nephrogenesis

Leila Romio; Andrew M. Fry; Paul J.D. Winyard; Sue Malcolm; Adrian S. Woolf; Sally Feather

OFD1 is the gene responsible for the oral-facial-digital syndrome type 1, a cause of inherited cystic renal disease. The protein contains an N-terminal LisH motif, considered important in microtubule dynamics, and several putative coiled-coil domains. This study used a combination of microscopic, biochemical, and overexpression approaches to demonstrate that OFD1 protein is a core component of the human centrosome throughout the cell cycle. Using a series of GFP-OFD1 deletion constructs, it was determined that the N-terminus containing the LisH domain is not required for centrosomal localization; however, coiled-coil domains are critical, with at least two being necessary for centrosomal targeting. Importantly, most reported OFD1 mutations are predicted to cause protein truncation with loss of coiled-coil domains, presumably leading to loss of centrosomal localization. Kidney development constitutes a classic model of mesenchymal-epithelial transformation. By immunoprobing human metanephroi and kidney epithelial lines, it was found that, during acquisition of epithelial polarity, OFD1 became localized to the apical zone of nephron precursor cells and then to basal bodies at the origin of primary cilia in fully differentiated epithelia. These striking patterns of OFD1 localization within cells place the protein at key sites, where it may play roles not only in microtubule organization (centrosomal function) but also in mechanosensation of urine flow (a primary ciliary function).


American Journal of Human Genetics | 2000

Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1.

Sally Feather; Sue Malcolm; Adrian S. Woolf; Wright; D Blaydon; C J Reid; Frances Flinter; Willem Proesmans; Koenraad Devriendt; Joan Carter; P. Warwicker; Timothy H.J. Goodship; Judith A. Goodship

Primary vesicoureteric reflux (VUR) affects 1%-2% of whites, and reflux nephropathy (RN) causes up to 15% of end-stage renal failure in children and adults. There is a 30-50-fold increased incidence of VUR in first-degree relatives of probands, compared with the general population. We report the results of the first genomewide search of VUR and RN; we studied seven European families whose members exhibit apparently dominant inheritance. We initially typed 387 polymorphic markers spaced, on average, at 10 cM throughout the genome; we used the GENEHUNTER program to provide parametric and nonparametric linkage analyses of affected individuals. The most positive locus spanned 20 cM on 1p13 between GATA176C01 and D1S1653 and had a nonparametric LOD score (NPL) of 5.76 (P=.0002) and a parametric LOD score of 3.16. Saturation with markers at 1-cM intervals increased the NPL to 5.94 (P=.00009). Hence, VUR maps to a locus on chromosome 1. There was evidence of genetic heterogeneity at the chromosome 1 locus, and 12 additional loci were identified genomewide, with P<.05. No significant linkage was found to 6p, where a renal and ureteric malformation locus has been reported, or to PAX2, mutations of which cause VUR in renal-coloboma syndrome. Our results support the hypothesis that VUR is a genetic disorder.


Clinical Journal of The American Society of Nephrology | 2013

Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome

Hugh J. McCarthy; Agnieszka Bierzynska; Matt Wherlock; Milos Ognjanovic; Larissa Kerecuk; Shivaram Hegde; Sally Feather; Rodney D. Gilbert; Leah Krischock; Caroline Jones; Manish D. Sinha; Nicholas J.A. Webb; Martin Christian; Margaret Williams; Stephen D. Marks; Ania Koziell; Gavin I. Welsh; Moin A. Saleem

BACKGROUND AND OBJECTIVES Up to 95% of children presenting with steroid-resistant nephrotic syndrome in early life will have a pathogenic single-gene mutation in 1 of 24 genes currently associated with this disease. Others may be affected by polymorphic variants. There is currently no accepted diagnostic algorithm for clinical genetic testing. The hypothesis was that the increasing reliability of next generation sequencing allows comprehensive one-step genetic investigation of this group and similar patient groups. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study used next generation sequencing to screen 446 genes, including the 24 genes known to be associated with hereditary steroid-resistant nephrotic syndrome. The first 36 pediatric patients collected through a national United Kingdom Renal Registry were chosen with comprehensive phenotypic detail. Significant variants detected by next generation sequencing were confirmed by conventional Sanger sequencing. RESULTS Analysis revealed known and novel disease-associated variations in expected genes such as NPHS1, NPHS2, and PLCe1 in 19% of patients. Phenotypically unexpected mutations were also detected in COQ2 and COL4A4 in two patients with isolated nephropathy and associated sensorineural deafness, respectively. The presence of an additional heterozygous polymorphism in WT1 in a patient with NPHS1 mutation was associated with earlier-onset disease, supporting modification of phenotype through genetic epistasis. CONCLUSIONS This study shows that next generation sequencing analysis of pediatric steroid-resistant nephrotic syndrome patients is accurate and revealing. This analysis should be considered part of the routine genetic workup of diseases such as childhood steroid-resistant nephrotic syndrome, where the chance of genetic mutation is high but requires sequencing of multiple genes.


Journal of The American Society of Nephrology | 2003

OFD1, the Gene Mutated in Oral-Facial-Digital Syndrome Type 1, Is Expressed in the Metanephros and in Human Embryonic Renal Mesenchymal Cells

Leila Romio; Victoria Wright; Karen L. Price; Paul J.D. Winyard; Dian Donnai; Mary Porteous; Brunella Franco; Giovanna Giorgio; Sue Malcolm; Adrian S. Woolf; Sally Feather

Oral-facial-digital syndrome type 1 (OFD1) causes polycystic kidney disease (PKD) and malformations of the mouth, face and digits. Recently, a gene on Xp22, OFD1, was reported to be mutated in a limited set of OFD1 patients. This study describes mutation analysis in six further OFD1 families. Additionally, gene expression was sought in human development. In two OFD1 kindreds affected by PKD, a frameshift mutation and a splice-site mutation were detected. In four apparently sporadic cases, three frameshift and a missense mutation were found. Using RT-PCR of RNA from first-trimester normal human embryos, both alternative splice forms of mRNA (OFD1a and OFD1b) were found to be widely expressed in organogenesis. Northern blot detected OFD1 mRNA in metanephros, brain, tongue, and limb, all organs affected in the syndrome. A polyclonal antibody directed to a C-terminal OFD1a epitope detected a 120-kD protein in the metanephros and in human renal mesenchymal cell lines. In normal human embryos, OFD1a immunolocalized to the metanephric mesenchyme, oral mucosa, nasal and cranial cartilage, and brain. Moreover, using normal human renal mesenchymal cell lines, the immunoreactive protein colocalized with gamma-tubulin, suggesting that OFD1 is associated with the centrosome. First, it is concluded that OFD1 mutations would generally be predicted to result in unstable transcripts or nonfunctional proteins. Second, OFD1 is expressed in human organogenesis; on the basis of the metanephric expression pattern, the results suggest that OFD1 plays a role in differentiation of metanephric precursor cells.


BJUI | 2008

The long‐term outcome of prenatally detected posterior urethral valves: a 10 to 23‐year follow‐up study

Grigorios Kousidis; D.F.M. Thomas; Henry Morgan; Nadeem Haider; Ramnath Subramaniam; Sally Feather

To document the functional outcome of patients with prenatally detected posterior urethral valves (PUV) in the second decade of life, and to evaluate the possible impact of prenatal diagnosis on the long‐term outcome of this condition


Journal of The American Society of Nephrology | 2010

Whole-Genome Linkage and Association Scan in Primary, Nonsyndromic Vesicoureteric Reflux

Heather J. Cordell; Rebecca Darlay; Pimphen Charoen; Aisling Stewart; Ambrose M. Gullett; Heather J Lambert; Sue Malcolm; Sally Feather; Timothy H.J. Goodship; Adrian S. Woolf; Rajko B. Kenda; Judith A. Goodship

Primary vesicoureteric reflux accounts for approximately 10% of kidney failure requiring dialysis or transplantation, and sibling studies suggest a large genetic component. Here, we report a whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux and reflux nephropathy. We used linkage and family-based association approaches to analyze 320 white families (661 affected individuals, generally from families with two affected siblings) from two populations (United Kingdom and Slovenian). We found modest evidence of linkage but no clear overlap with previous studies. We tested for but did not detect association with six candidate genes (AGTR2, HNF1B, PAX2, RET, ROBO2, and UPK3A). Family-based analysis detected associations with one single-nucleotide polymorphism (SNP) in the UK families, with three SNPs in the Slovenian families, and with three SNPs in the combined families. A case-control analysis detected associations with three additional SNPs. The results of this study, which is the largest to date investigating the genetics of reflux, suggest that major loci may not exist for this common renal tract malformation within European populations.


Kidney International | 2017

Genomic and clinical profiling of a national Nephrotic Syndrome cohort advocates a precision medicine approach to disease management

Agnieszka Bierzynska; Hugh J. McCarthy; Katrina Soderquest; Ethan S Sen; Elizabeth Colby; Wen Y. Ding; Marwa M. Nabhan; Larissa Kerecuk; Shivram Hegde; David Hughes; Stephen D. Marks; Sally Feather; Caroline Jones; Nicholas J. A. Webb; Milos Ognjanovic; Martin Christian; Rodney D. Gilbert; Manish D. Sinha; Graham M. Lord; Michael A. Simpson; Ania Koziell; Gavin I. Welsh; Moin A. Saleem

Steroid Resistant Nephrotic Syndrome (SRNS) in children and young adults has differing etiologies with monogenic disease accounting for 2.9-30% in selected series. Using whole exome sequencing we sought to stratify a national population of children with SRNS into monogenic and non-monogenic forms, and further define those groups by detailed phenotypic analysis. Pediatric patients with SRNS were identified via a national United Kingdom Renal Registry. Whole exome sequencing was performed on 187 patients, of which 12% have a positive family history with a focus on the 53 genes currently known to be associated with nephrotic syndrome. Genetic findings were correlated with individual case disease characteristics. Disease causing variants were detected in 26.2% of patients. Most often this occurred in the three most common SRNS-associated genes: NPHS1, NPHS2, and WT1 but also in 14 other genes. The genotype did not always correlate with expected phenotype since mutations in OCRL, COL4A3, and DGKE associated with specific syndromes were detected in patients with isolated renal disease. Analysis by primary/presumed compared with secondary steroid resistance found 30.8% monogenic disease in primary compared with none in secondary SRNS permitting further mechanistic stratification. Genetic SRNS progressed faster to end stage renal failure, with no documented disease recurrence post-transplantation within this cohort. Primary steroid resistance in which no gene mutation was identified had a 47.8% risk of recurrence. In this unbiased pediatric population, whole exome sequencing allowed screening of all current candidate genes. Thus, deep phenotyping combined with whole exome sequencing is an effective tool for early identification of SRNS etiology, yielding an evidence-based algorithm for clinical management.

Collaboration


Dive into the Sally Feather's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.F.M. Thomas

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Horia Stanescu

University College London

View shared research outputs
Top Co-Authors

Avatar

Robert Kleta

University College London

View shared research outputs
Top Co-Authors

Avatar

Heather J Lambert

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge