Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sally M. Bradberry is active.

Publication


Featured researches published by Sally M. Bradberry.


Toxicological Reviews | 2005

Poisoning due to pyrethroids.

Sally M. Bradberry; Sarah A. Cage; Alex T. Proudfoot; J. Allister Vale

The first pyrethroid pesticide, allethrin, was identified in 1949. Allethrin and other pyrethroids with a basic cyclopropane carboxylic ester structure are type I pyrethroids. The insecticidal activity of these synthetic pyrethroids was enhanced further by the addition of a cyano group to give α-cyano (type II) pyrethroids, such as cypermethrin. The finding of insecticidal activity in a group of phenylacetic 3-phenoxybenzyl esters, which lacked the cyclopropane ring but contained the α-cyano group (and hence were type II pyrethroids) led to the development of fenvalerate and related compounds. All pyrethroids can exist as at least four stereoisomers, each with different biological activities. They are marketed as racemic mixtures or as single isomers. In commercial formulations, the activity of pyrethroids is usually enhanced by the addition of a synergist such as piperonyl butoxide, which inhibits metabolic degradation of the active ingredient. Pyrethroids are used widely as insecticides both in the home and commercially, and in medicine for the topical treatment of scabies and headlice. In tropical countries mosquito nets are commonly soaked in solutions of deltamethrin as part of antimalarial strategies.Pyrethroids are some 2250 times more toxic to insects than mammals because insects have increased sodium channel sensitivity, smaller body size and lower body temperature. In addition, mammals are protected by poor dermal absorption and rapid metabolism to non-toxic metabolites. The mechanisms by which pyrethroids alone are toxic are complex and become more complicated when they are co-formulated with either piperonyl butoxide or an organophosphorus insecticide, or both, as these compounds inhibit pyrethroid metabolism. The main effects of pyrethroids are on sodium and chloride channels. Pyrethroids modify the gating characteristics of voltage-sensitive sodium channels to delay their closure. A protracted sodium influx (referred to as a sodium ‘tail current’) ensues which, if it is sufficiently large and/or long, lowers the action potential threshold and causes repetitive firing; this may be the mechanism causing paraesthesiae. At high pyrethroid concentrations, the sodium tail current may be sufficiently great to prevent further action potential generation and ‘conduction block’ ensues. Only low pyrethroid concentrations are necessary to modify sensory neurone function. Type II pyrethroids also decrease chloride currents through voltage-dependent chloride channels and this action probably contributes the most to the features of poisoning with type II pyrethroids. At relatively high concentrations, pyrethroids can also act on GABA-gated chloride channels, which may be responsible for the seizures seen with severe type II poisoning.Despite their extensive world-wide use, there are relatively few reports of human pyrethroid poisoning. Less than ten deaths have been reported from ingestion or following occupational exposure. Occupationally, the main route of pyrethroid absorption is through the skin. Inhalation is much less important but increases when pyrethroids are used in confined spaces. The main adverse effect of dermal exposure is paraesthesiae, presumably due to hyperactivity of cutaneous sensory nerve fibres. The face is affected most commonly and the paraesthesiae are exacerbated by sensory stimulation such as heat, sunlight, scratching, sweating or the application of water.Pyrethroid ingestion gives rise within minutes to a sore throat, nausea, vomiting and abdominal pain. There may be mouth ulceration, increased secretions and/or dysphagia. Systemic effects occur 4–8 hours after exposure. Dizziness, headache and fatigue are common, and palpitations, chest tightness and blurred vision less frequent. Coma and convulsions are the principal life-threatening features. Most patients recover within 6 days, although there were seven fatalities among 573 cases in one series and one among 48 cases in another.Management is supportive. As paraesthesiae usually resolve in 12–24 hours, specific treatment is not generally required, although topical application of dl-α tocopherol acetate (vitamin E) may reduce their severity.


Clinical Toxicology | 2000

Mechanisms of Toxicity, Clinical Features, and Management of Acute Chlorophenoxy Herbicide Poisoning: A Review

Sally M. Bradberry; Barbara E. Watt; Alex T. Proudfoot; J. Allister Vale

Introduction: Chlorophenoxy herbicides are used widely for the control of broad-leaved weeds. They exhibit a variety of mechanisms of toxicity including dose-dependent cell membrane damage, uncoupling of oxidative phosphorylation, and disruption of acetylcoenzyme A metabolism. Between January 1962 and January 1999, 66 cases of chlorophenoxy herbicide poisoning following ingestion were reported in the literature. Features following ingestion: Adjuvants in the formulations may have contributed to some of the features observed. Vomiting, abdominal pain, diarrhea, and, occasionally, gastrointestinal hemorrhage were early effects. When present, hypotension was predominantly due to intravascular volume loss, although vasodilation and direct myocardial toxicity may have contributed in some cases. Neurotoxic features included coma, hypertonia, hyperreflexia, ataxia, nystagmus, miosis, hallucinations, convulsions, fasciculation, and paralysis. Hypoventilation occurred not infrequently, usually in association with central nervous system depression, but respiratory muscle weakness was a factor in the development of respiratory failure in some patients. Myopathic symptoms including limb muscle weakness, loss of tendon reflexes, and myotonia were observed and increased creatine kinase activity was noted in some cases. Other clinical features reported included metabolic acidosis, rhabdomyolysis, renal failure, increased aminotransferase activities, pyrexia, and hyperventilation. Twenty-two of 66 patients died. Features following dermal and inhalational exposure: Substantial dermal or inhalational 2,4-dichlorophenoxyacetic acid exposure has occasionally led to systemic features but no such reports have been published in the last 20 years and no fatalities have been reported at any time. Substantial dermal exposure has been reported to cause mild gastrointestinal irritation after a latent period followed by progressive mixed sensory-motor peripheral neuropathy. Mild, transient gastrointestinal and peripheral neuromuscular symptoms have also occurred after occupational inhalation exposure, with or without dermal exposure. Management: In addition to supportive care, alkaline diuresis to enhance herbicide elimination should be considered in all seriously poisoned patients. Limited clinical data suggest that hemodialysis produces similar herbicide clearance to alkaline diuresis without the need for urine pH manipulation and the administration of substantial amounts of intravenous fluid in an already compromised patient. Conclusions: While chlorophenoxy herbicide poisoning is uncommon, ingestion of a chlorophenoxy herbicide can result in serious and sometimes fatal sequelae. In severe cases of poisoning, alkaline diuresis or hemodialysis to increase herbicide elimination should be considered.


Toxicological Reviews | 2006

Sodium fluoroacetate poisoning.

Alex T. Proudfoot; Sally M. Bradberry; J. Allister Vale

Sodium fluoroacetate was introduced as a rodenticide in the US in 1946. However, its considerable efficacy against target species is offset by comparable toxicity to other mammals and, to a lesser extent, birds and its use as a general rodenticide was therefore severely curtailed by 1990. Currently, sodium fluoroacetate is licensed in the US for use against coyotes, which prey on sheep and goats, and in Australia and New Zealand to kill unwanted introduced species.The extreme toxicity of fluoroacetate to mammals and insects stems from its similarity to acetate, which has a pivotal role in cellular metabolism. Fluoroacetate combines with coenzyme A (CoA-SH) to form fluoroacetyl CoA, which can substitute for acetyl CoA in the tricarboxylic acid cycle and reacts with citrate synthase to produce fluorocitrate, a metabolite of which then binds very tightly to aconitase, thereby halting the cycle. Many of the features of fluoroacetate poisoning are, therefore, largely direct and indirect consequences of impaired oxidative metabolism. Energy production is reduced and intermediates of the tricarboxylic acid cycle subsequent to citrate are depleted. Among these is oxoglutarate, a precursor of glutamate, which is not only an excitatory neurotransmitter in the CNS but is also required for efficient removal of ammonia via the urea cycle. Increased ammonia concentrations may contribute to the incidence of seizures. Glutamate is also required for glutamine synthesis and glutamine depletion has been observed in the brain of fluoroacetate-poisoned rodents. Reduced cellular oxidative metabolism contributes to a lactic acidosis. Inability to oxidise fatty acids via the tricarboxylic acid cycle leads to ketone body accumulation and worsening acidosis. Adenosine triphosphate (ATP) depletion results in inhibition of high energy-consuming reactions such as gluconeogenesis. Fluoroacetate poisoning is associated with citrate accumulation in several tissues, including the brain. Fluoride liberated from fluoroacetate, citrate and fluorocitrate are calcium chelators and there are both animal and clinical data to support hypocalcaemia as a mechanism of fluoroacetate toxicity. However, the available evidence suggests the fluoride component does not contribute.Acute poisoning with sodium fluoroacetate is uncommon. Ingestion is the major route by which poisoning occurs. Nausea, vomiting and abdominal pain are common within 1 hour of ingestion. Sweating, apprehension, confusion and agitation follow. Both supraventricular and ventricular arrhythmias have been reported and nonspecific ST- and T-wave changes are common, the QTc may be prolonged and hypotension may develop. Seizures are the main neurological feature. Coma may persist for several days. Although several possible antidotes have been investigated, they are of unproven value in humans. The immediate, and probably only, management of fluoroacetate poisoning is therefore supportive, including the correction of hypocalcaemia.


Clinical Toxicology | 2009

Dimercaptosuccinic acid (succimer; DMSA) in inorganic lead poisoning.

Sally M. Bradberry; Allister Vale

Introduction: This article reviews data on the efficacy of succimer (dimercaptosuccinic acid, DMSA) in the treatment of human inorganic lead poisoning, the adverse effects associated with its use, and summarizes current understanding of the pharmacokinetic and pharmacodynamic aspects. Methods. Medline, Toxline, and Embase were searched and 912 papers were identified and considered. Pharmacokinetics and pharmacodynamics. DMSA is absorbed rapidly but incompletely after oral administration, probably through an active transporter. There is evidence that enterohepatic circulation occurs. Most DMSA in plasma is protein (mainly albumin)-bound through a disulfide bond with cysteine; only a very small amount is present as free drug, which is filtered at the glomerulus then extensively reabsorbed into proximal tubule cells. Nonfiltered protein-bound DMSA in peritubular capillaries is also available for uptake into proximal tubule cells by active anion transport at the basolateral membrane. DMSA therefore accumulates in the kidney where it is extensively metabolized in humans to mixed disulfides of cysteine. Some 10–25% of an orally administered dose of DMSA is excreted in urine, the majority within 24 h and most (>90%) as DMSA–cysteine disulfide conjugates. It is not known whether protein-bound DMSA can chelate lead; there is evidence that the mixed disulfides of cysteine are the active chelating moiety in humans. If this is the case, this suggests that chelation occurs principally, if not exclusively, in the kidney. Dose. DMSA 30 mg/kg/day is more effective than either 10 or 20 mg/kg/day in enhancing urine lead excretion. Duration of therapy. Initial clinical studies with DMSA involved the administration of a 5-day course of treatment. Subsequently, a 19- to 26-day regimen was introduced with the intent of preventing or at least blunting a rebound in the blood lead concentration. Studies suggest, however, that repeated courses of DMSA 30 mg/kg/day for at least 5 days are equally efficacious if a treatment-free period of at least 1 week between courses is included to allow redistribution of lead from bone to soft tissues and blood. There is also evidence that in more severely poisoned patients DMSA 30 mg/kg/day can be given for more than 5 days with benefit. Efficacy. DMSA 30 mg/kg/day significantly increases urine lead elimination and significantly reduces blood lead concentrations in lead-poisoned patients, though there is substantial individual variation in response. Over a 5-day course, mean daily urine lead excretion exceeds baseline by between 5- and 20-fold and blood lead concentrations fall to 50% or less of the pretreatment concentration, with wide variation. Maximum enhancement of urine lead elimination typically occurs with the first dose. Most symptomatic patients report improvement after 2 days of treatment. However, DMSA did not improve cognition in children < 3 years old with mild lead poisoning, presumably because lead-induced neurological damage occurred during development in utero and/or early infancy. DMSA in pregnancy and in the neonate. DMSA is not teratogenic but did produce maternal toxicity (decreased weight gain) and fetotoxicity when given in high dose (100–1,000 mg/kg/day) in experimental studies. For this reason sodium calcium edetate is generally preferred in pregnancy. Adverse effects. A transient modest rise in transaminase activity during chelation occurs in up to 60% of patients but has not resulted in clinically significant sequelae. Skin reactions occur in approximately 6% of treated patients and are occasionally severe. DMSA also increases urine copper and zinc excretion but not to a clinically important extent. Conclusions. DMSA is an effective lead chelator that primarily chelates renal lead. It is generally well tolerated but may occasionally cause clinically important adverse effects. DMSA may now be considered as an alternative to sodium calcium edetate, particularly when an oral antidote is preferable.


Toxicological Reviews | 2004

Poisoning Due to Chlorophenoxy Herbicides

Sally M. Bradberry; Alex T. Proudfoot; J. Allister Vale

Chlorophenoxy herbicides are used widely for the control of broad-leaved weeds. They exhibit a variety of mechanisms of toxicity including dose-dependent cell membrane damage, uncoupling of oxidative phosphorylation and disruption of acetylcoenzyme A metabolism. Following ingestion, vomiting, abdominal pain, diarrhoea and, occasionally, gastrointestinal haemorrhage are early effects. Hypotension, which is common, is due predominantly to intravascular volume loss, although vasodilation and direct myocardial toxicity may also contribute. Coma, hypertonia, hyperreflexia, ataxia, nystagmus, miosis, hallucinations, convulsions, fasciculation and paralysis may then ensue. Hypoventilation is commonly secondary to CNS depression, but respiratory muscle weakness is a factor in the development of respiratory failure in some patients. Myopathic symptoms including limb muscle weakness, loss of tendon reflexes, myotonia and increased creatine kinase activity have been observed. Metabolic acidosis, rhabdomyolysis, renal failure, increased aminotransferase activities, pyrexia and hyperventilation have been reported. Substantial dermal exposure to 2,4-dichlorophenoxy acetic acid (2,4-D) has led occasionally to systemic features including mild gastrointestinal irritation and progressive mixed sensorimotor peripheral neuropathy. Mild, transient gastrointestinal and peripheral neuromuscular symptoms have occurred after occupational inhalation exposure.In addition to supportive care, urine alkalinization with high-flow urine output will enhance herbicide elimination and should be considered in all seriously poisoned patients. Haemodialysis produces similar herbicide clearances to urine alkalinization without the need for urine pH manipulation and the administration of substantial amounts of intravenous fluid in an already compromised patient.


Toxicological Reviews | 2005

Management of the cardiovascular complications of tricyclic antidepressant poisoning : role of sodium bicarbonate.

Sally M. Bradberry; H. K. Ruben Thanacoody; Barbara E. Watt; Simon H. L. Thomas; J. Allister Vale

Experimental studies suggest that both alkalinisation and sodium loading are effective in reducing cardiotoxicity independently. Species and experimental differences may explain why sodium bicarbonate appears to work by sodium loading in some studies and by a pH change in others. In the only case series, the administration of intravenous sodium bicarbonate to achieve a systemic pH of 7.5–7.55 reduced QRS prolongation, reversed hypotension (although colloid was also given) and improved mental status in patients with moderate to severe tricyclic antidepressant poisoning. This clinical study supports the use of sodium bicarbonate in the management of the cardiovascular complications of tricyclic antidepressant poisoning. However, the clinical indications and dosing recommendations remain to be clarified.Hypotension should be managed initially by administration of colloid or crystalloid solutions, guided by central venous pressure monitoring. Based on experimental and clinical studies, sodium bicarbonate should then be administered. If hypotension persists despite adequate filling pressure and sodium bicarbonate administration, inotropic support should be initiated. In a non-randomised controlled trial in rats, epinephrine resulted in a higher survival rate and was superior to norepinephrine both when the drugs were used alone or when epinephrine was used in combination with sodium bicarbonate. Sodium bicarbonate alone resulted in a modest increase in survival rate but this increased markedly when sodium bicarbonate was used with epinephrine or norepinephrine. Clinical studies suggest benefit from norepinephrine and dopamine; in an uncontrolled study the former appeared more effective. Glucagon has also been of benefit. Experimental studies suggest extracorporeal circulation membrane oxygenation is also of potential value.The immediate treatment of arrhythmias involves correcting hypoxia, electrolyte abnormalities, hypotension and acidosis. Administration of sodium bicarbonate may resolve arrhythmias even in the absence of acidosis and, only if this therapy fails, should conventional antiarrhythmic drugs be used. The class 1b agent phenytoin may reverse conduction defects and may be used for resistant ventricular tachycardia. There is also limited evidence for benefit from magnesium infusion. However, class 1a and 1c antiarrhythmic drugs should be avoided since they worsen sodium channel blockade, further slow conduction velocity and depress contractility. Class II agents (β-blockers) may also precipitate hypotension and cardiac arrest.


Clinical Toxicology | 2009

A comparison of sodium calcium edetate (edetate calcium disodium) and succimer (DMSA) in the treatment of inorganic lead poisoning

Sally M. Bradberry; Allister Vale

Introduction. This article reviews the experimental and clinical studies that have compared the efficacy (impact on urine lead excretion, blood and tissue lead concentrations, resolution of features and survival) of sodium calcium edetate (edetate calcium disodium) and succimer (DMSA) in the treatment of inorganic lead poisoning. It also summarizes the pharmacokinetic and pharmacodynamic aspects and the adverse effects of treatment. Methods. Medline, Toxline, and Embase were searched for all available years to June 2009. Pharmacokinetics and pharmacodynamics. The absorption of oral DMSA is more complete than sodium calcium edetate; the latter has to be administered parenterally. Both antidotes are distributed predominantly extracellularly. Sodium calcium edetate is not metabolized, whereas DMSA is extensively metabolized to mixed disulfides of cysteine. The two antidotes have elimination half-lives of less than 60 min. There is no evidence that either antidote crosses the blood–brain barrier to any major extent. Sodium calcium edetate chelates lead by displacement of the central Ca2+ ion with Pb2+. The nature of the DMSA–lead chelate is less clearly defined. There is evidence that the mixed disulfides of cysteine are the active chelating moiety in humans. If this is the case, this suggests that chelation occurs principally, if not exclusively, in the kidney. The primary source of lead mobilized by sodium calcium edetate is bone with an additional contribution from kidney and liver. Efficacy. Comparison of the experimental studies is complicated by substantial variations in study design, particularly the antidote dose, the route and duration of treatment, the amount and duration of lead dosing, and lack of direct comparison between antidotes (comparison was usually made with control). In experimental studies that used equimolar and clinically relevant antidote doses and assessed the impact of DMSA and sodium calcium edetate on urine lead excretion and/or blood lead concentrations, similar results were found, though no direct comparison between antidotes was undertaken. DMSA was more effective than sodium calcium edetate in reducing the kidney lead concentration, sodium calcium edetate was more effective than DMSA in reducing bone lead concentrations, and there was no consistently observed effect of chelation therapy on brain lead concentrations in these experimental studies. Only two clinical studies have compared equimolar or similar antidote doses in enhancing urine lead excretion; there was no statistical difference between the antidotes, though both studies had limitations. DMSA and sodium calcium edetate had a comparable impact on lowering blood lead concentrations in a clinical study using similar molar antidote doses. Adverse effects. Sodium calcium edetate causes dose-related nephrotoxicity. Both agents deplete zinc and copper, the effect on zinc being significantly greater with sodium calcium edetate. A transient increase in hepatic transaminase activity has been reported with both antidotes but appears to be more common with DMSA and neither has been associated with clinically significant hepatic toxicity. Skin lesions during treatment with sodium calcium edetate are unusual and have been attributed to zinc deficiency. DMSA has occasionally been associated with a severe mucocutaneous reaction necessitating discontinuation of therapy. Conclusions. Oral DMSA and parenteral sodium calcium edetate are both effective chelators of lead. There are currently insufficient data, however, to conclude that either antidote is superior in enhancing lead excretion. Both antidotes resolve the symptoms of moderate and severe lead toxicity rapidly. Although there is greater clinical experience with sodium calcium edetate, particularly in the treatment of lead encephalopathy, oral DMSA may now be considered as an alternative in circumstances where oral therapy is preferable.


Toxicological Reviews | 2005

Poisoning due to Urea Herbicides

Barbara E. Watt; Alex T. Proudfoot; Sally M. Bradberry; J. Allister Vale

Urea herbicides, which act by inhibiting photosynthesis, were introduced in 1952 and are now used as pre and post-emergence herbicides for general weed control in agricultural and non-agricultural practices. Urea herbicides are generally of low acute toxicity and severe poisoning is only likely following ingestion when nausea, vomiting, diarrhoea and abdominal pain may occur. As urea herbicides are metabolised to aniline derivatives, which are potent oxidants of haemoglobin, methaemoglobinaemia (18–80%) has been documented, as well as haemolysis. Treatment is supportive and symptomatic. Methylthioninium chloride (methylene blue) 1–2mg (the dose depending on the severity of features) should be administered intravenously over 5–10 minutes if there are symptoms consistent with methaemoglobinaemia and/or a methaemoglobin concentration >30%.


Clinical Toxicology | 2009

DMPS can reverse the features of severe mercury vapor-induced neurological damage.

Sally M. Bradberry; T. M. T. Sheehan; C. R. Barraclough; J. A. Vale

Case report. A 36-year-old jewelry producer presented with tremor, slurred speech, lethargy, headache, and incoordination. On examination he had a coarse tremor of the outstretched hands and protruded tongue, slurred speech, “Hatters shakes” handwriting, impaired heel-toe walking and heel-shin coordination, mild dysdiadochokinesis, and constricted visual fields to confrontation. The patient received four 5-day courses of oral 2,3-dimercapto-1-propanesulfonate (30 mg/kg/day), which was associated with substantial objective clinical improvement and the excretion of 99,406 μg mercury. Conclusion. We recommend that the administration of 2,3-dimercapto-1-propanesulfonate should be considered in symptomatic patients who have been exposed to mercury vapor and who have supporting analytical confirmation of the diagnosis.


Clinical Toxicology | 2000

Chemical Contamination of Private Drinking Water Supplies in the West Midlands, United Kingdom

Wayne N. Harrison; Sally M. Bradberry; J. Allister Vale

Introduction: In the United Kingdom, private drinking water supplies are subject to much less stringent sampling and testing regimes than are public supplies. Information regarding the quality of private drinking water supplies is disparate and poorly defined. The aim of this study was to collate the data for chemical contamination of private drinking water supplies in the West Midlands, a region of Central England with a population of 5.3 million. Methods: The most recent years data on the number of private supplies, the number of supplies sampled, and the number and type of failures for chemical parameters were obtained from District and Local Authorities in the West Midlands Region. Results: Data covered 12-month periods during 1995–1996. Of the 6013 private supplies identified, samples from 1297 had been tested for chemical parameters during the period of the study. A total of 420 individual failures for chemical parameters were reported in 386 water supplies. The majority of breaches of United Kingdom and European Union standards were due to increased concentrations of nitrates (270), magnesium (21), manganese (17), and iron (15). Increased turbidity was present in 27 cases. Only 6 samples breached the standard for lead and 6 for pesticides. Conclusions: Over a quarter of the supplies tested during the period of the study were in breach of United Kingdom and European Union legislation. Of the reported failures, the high concentrations of nitrate and nitrite, lead, copper, and sulfate are of concern to health and remedial action is warranted. Regular sampling of private drinking water supplies remains necessary to prevent risk to health from a wide variety of toxic contaminants.

Collaboration


Dive into the Sally M. Bradberry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allister Vale

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G Jackson

Edinburgh Royal Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge