Salma Ben-Salem
United Arab Emirates University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Salma Ben-Salem.
Metabolic Brain Disease | 2015
Salma Ben-Salem; Joseph G. Gleeson; Aisha M. Al-Shamsi; Barira Islam; Jozef Hertecant; Bassam R. Ali; Lihadh Al-Gazali
Deficiency of Asparagine Synthetase (ASNSD, MIM 615574) is a very rare autosomal recessive disorder presenting with some brain abnormalities. Affected individuals have congenital microcephaly and progressive encephalopathy associated with severe intellectual disability and intractable seizures. The loss of function of the asparagine synthetase (ASNS, EC 6.3.5.4), particularly in the brain, is the major cause of this particular congenital microcephaly. In this study, we clinically evaluated an affected child from a consanguineous Emirati family presenting with congenital microcephaly and epileptic encephalopathy. In addition, whole-exome sequencing revealed a novel homozygous substitution mutation (c.1193A > C) in the ASNS gene. This mutation resulted in the substitution of highly conserved tyrosine residue by cysteine (p.Y398C). Molecular modeling analysis predicts hypomorphic and damaging effects of this mutation on the protein structure and altering its enzymatic activity. Therefore, we conclude that the loss of ASNS function is most likely the cause of this condition in the studied family. This report brings the number of reported families with this very rare disorder to five and the number of pathogenic mutations in the ASNS gene to four. This finding extends the ASNS pathogenic mutations spectrum and highlights the utility of whole-exome sequencing in elucidation the causes of rare recessive disorders that are heterogeneous and/or overlap with other conditions.
Human Molecular Genetics | 2014
Rachel E. Reiff; Bassam R. Ali; Byron Baron; Salma Ben-Salem; Michael E. Coulter; Christian Schubert; R. Sean Hill; Nadia A. Akawi; Banan Al-Younes; Namik Kaya; Gilad D. Evrony; Muna Al-Saffar; Jillian M. Felie; Jennifer N. Partlow; Christine M. Sunu; Pierre Schembri-Wismayer; Fowzan S. Alkuraya; Brian F. Meyer; Christopher A. Walsh; Lihadh Al-Gazali; Ganeshwaran H. Mochida
Whereas many genes associated with intellectual disability (ID) encode synaptic proteins, transcriptional defects leading to ID are less well understood. We studied a large, consanguineous pedigree of Arab origin with seven members affected with ID and mild dysmorphic features. Homozygosity mapping and linkage analysis identified a candidate region on chromosome 17 with a maximum multipoint logarithm of odds score of 6.01. Targeted high-throughput sequencing of the exons in the candidate region identified a homozygous 4-bp deletion (c.169_172delCACT) in the METTL23 (methyltransferase like 23) gene, which is predicted to result in a frameshift and premature truncation (p.His57Valfs*11). Overexpressed METTL23 protein localized to both nucleus and cytoplasm, and physically interacted with GABPA (GA-binding protein transcription factor, alpha subunit). GABP, of which GABPA is a component, is known to regulate the expression of genes such as THPO (thrombopoietin) and ATP5B (ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide) and is implicated in a wide variety of important cellular functions. Overexpression of METTL23 resulted in increased transcriptional activity at the THPO promoter, whereas knockdown of METTL23 with siRNA resulted in decreased expression of ATP5B, thus revealing the importance of METTL23 as a regulator of GABPA function. The METTL23 mutation highlights a new transcriptional pathway underlying human intellectual function.
Investigative Ophthalmology & Visual Science | 2014
Reham M. Milhem; Salma Ben-Salem; Lihadh Al-Gazali; Bassam R. Ali
PURPOSE Fifteen missense mutations in the frizzled family receptor 4 (FZD4) reported to cause familial exudative vitreoretinopathy (FEVR) were evaluated to establish the pathological cellular mechanism of disease and to explore novel therapeutic strategies. METHODS The mutations were generated by site-directed mutagenesis and expressed in HeLa and COS-7 cell lines. Confocal fluorescence microscopy and N-glycosylation profiling were used to observe the subcellular localization of the mutant proteins relative to wild-type (WT). Polyubiquitination studies were used to establish the involvement of the proteasome. Culturing at reduced temperatures and incubation in the presence of chemical compounds were used to enhance mutant protein processing and exit out of the endoplasmic reticulum (ER). RESULTS Confocal fluorescence microscopy of the mutants showed three distinct subcellular localizations, namely, a plasma membrane pattern, an ER pattern, and a mixed pattern to both compartments. Confocal fluorescence microscopy and N-glycosylation profiling established the predominant ER localization of P33S, G36N, H69Y, M105T, M105V, C181R, C204R, C204Y, and G488D mutants. Coexpression of these mutants with WT FZD4 showed the inability of the mutants to trap WT FZD4. Culturing the expressing cells at reduced temperatures or in the presence of chemical agents directed at ameliorating protein misfolding resulted in partial rescue of trafficking defects observed for M105T and C204Y mutants. CONCLUSIONS Defective trafficking resulting in haploinsufficiency is a major cellular mechanism for several missense FEVR-causing FZD4 mutants. Our findings indicate that this trafficking defect might be correctable for some mutants, which may offer opportunities for the development of novel therapeutics approaches for this condition.
Molecular Syndromology | 2012
Salma Ben-Salem; M.A. Begum; Bassam R. Ali; Lihadh Al-Gazali
Carpenter syndrome is caused by mutations in the RAB23 gene that encodes a small GTPase of the Rab subfamily of proteins. Rab proteins are known to be involved in the regulation of cellular trafficking and signal transduction. Currently, only few mutations in RAB23 have been reported in patients with Carpenter syndrome. In this paper, we report the clinical features, molecular and functional analysis of 2 children from an Emirati consanguineous family with this syndrome. The affected children exhibit the typical features including craniosynostosis, typical facial appearance, polysyndactyly, and obesity. Molecular analysis of the RAB23 gene revealed a homozygous mutation affecting the first nucleotide of the acceptor splice site of exon 5 (c.482-1G>A). This mutation affects the authentic mRNA splicing and activates a cryptic acceptor site within exon 5. Thus, the erroneous splicing results in an eight nucleotide deletion, followed by a frameshift and premature termination codon at position 161 (p.V161fsX3). Due to the loss of the C-terminally prenylatable cysteine residue, the truncated protein will probably fail to associate with the target cellular membranes due to the absence of the necessary lipid modification. The p.V161fsX3 extends the spectrum of RAB23 mutations and points to the crucial role of prenylation in the pathogenesis of Carpenter syndrome within this family.
European Journal of Pediatrics | 2015
Aisha M. Al-Shamsi; Salma Ben-Salem; Jozef Hertecant; Fatma Al-Jasmi
AbstractTransaldolase deficiency is a heterogeneous disorder of carbohydrate metabolism characterized clinically by dysmorphic features, cutis laxa, hepatosplenomegaly, hepatic fibrosis, pancytopenia, renal and cardiac abnormalities, and urinary excretion of polyols. This report describes four Emirati patients with transaldolase deficiency caused by the homozygous p.R192C missense mutation in TALDO1 displaying wide phenotypic variability. The patients had variable clinical presentations including hepatosplenomegaly, pancytopenia, liver failure, proteinuria, hydrops fetalis, cardiomyopathy, and skin manifestations (e.g., dryness, cutis laxa, ichthyosis, telangiectasias, and hemangiomas). Biochemical analyses including urinary concentration of polyols were consistent with transaldolase deficiency. The mutation p.R192C was previously identified in an Arab patient, suggesting a founder effect in Arab populations. Conclusion: The above findings support the premise that biallelic mutations in TALDO1 are responsible for transaldolase deficiency and confirm the broad phenotypic variability of this condition, even with the same genotype.
Human genome variation | 2014
Salma Ben-Salem; Aisha M. Al-Shamsi; Joseph G. Gleeson; Bassam R. Ali; Lihadh Al-Gazali
Joubert syndrome (JS) is a rare autosomal recessive (AR), neurological condition characterized by dysgenesis of the cerebellar vermis with the radiological hallmark of molar tooth sign, oculomotor apraxia, recurrent hyperventilation and intellectual disability. Most cases display a broad spectrum of additional features, including polydactyly, retinal dystrophy and renal abnormalities, which define different subtypes of JS-related disorders (JSRDs). To date, 23 genes have been shown to cause JSRDs, and although most of the identified genes encode proteins involved in cilia function or assembly, the molecular mechanisms associated with ciliary signaling remain enigmatic. Arab populations are ethnically diverse with high levels of consanguinity (20–60%) and a high prevalence of AR disorders. In addition, isolated communities with very-high levels of inbreeding and founder mutations are common. In this article, we review the 70 families reported thus far with JS and JSRDs that have been studied at the molecular level from all the Arabic countries and compile the mutations found. We show that JS and the related JSRDs are genetically heterogeneous in Arabs, with 53 mutations in 15 genes. Thirteen of these mutations are potentially founder mutations for the region.
eLife | 2017
Song Liu; Sangeeta Kumari; Qiang Hu; Dhirodatta Senapati; Varadha Balaji Venkadakrishnan; Dan Wang; Adam D. DePriest; Simon Schlanger; Salma Ben-Salem; Malyn May Valenzuela; Belinda Willard; Shaila Mudambi; Wendy M. Swetzig; Gokul M. Das; Mojgan Shourideh; Shahriah Koochekpour; Sara M. Falzarano; Cristina Magi-Galluzzi; Neelu Yadav; Xiwei Chen; Changshi Lao; Jianmin Wang; Jean Noel Billaud; Hannelore V. Heemers
Standard treatment for metastatic prostate cancer (CaP) prevents ligand-activation of androgen receptor (AR). Despite initial remission, CaP progresses while relying on AR. AR transcriptional output controls CaP behavior and is an alternative therapeutic target, but its molecular regulation is poorly understood. Here, we show that action of activated AR partitions into fractions that are controlled preferentially by different coregulators. In a 452-AR-target gene panel, each of 18 clinically relevant coregulators mediates androgen-responsiveness of 0–57% genes and acts as a coactivator or corepressor in a gene-specific manner. Selectivity in coregulator-dependent AR action is reflected in differential AR binding site composition and involvement with CaP biology and progression. Isolation of a novel transcriptional mechanism in which WDR77 unites the actions of AR and p53, the major genomic drivers of lethal CaP, to control cell cycle progression provides proof-of-principle for treatment via selective interference with AR action by exploiting AR dependence on coregulators.
Gene | 2013
Sara A. Al-Jaberi; Salma Ben-Salem; Meriam Messedi; Fatma Makni Ayadi; Lihadh Al-Gazali; Bassam R. Ali
BACKGROUND The chemokine receptor components play crucial roles in the immune system and some of them serve as co-receptors for the HIV virus. Several studies have documented that variants in chemokine receptors are correlated with susceptibility and resistance to infection with HIV virus. For example, mutations in the chemokine receptor 5 gene (CCR5) resulting in loss-of-function (such as the homozygous CCR5∆32) confer high degree of resistance to HIV infection. Heterozygotes for these variants exhibit slow progression to AIDS. The prevalence of CCR5 polymorphisms varies among ethnic and geographical groups. For example, the CCR5∆32 variant is present in 10-15% of north Europeans but is rarely encountered among Africans. This study aims to identify the prevalence of some CCR5 variants in two geographically distant Arab populations (namely Emiratis and Tunisians). METHODOLOGY The prevalence of CCR5 gene variants including CCR5∆32, FS299, C101X, A29S and C178R has been determined using PCR and direct DNA sequencing. A total of 403 unrelated healthy individuals (253 Emiratis and 150 Tunisians) were genotyped for the CCR5∆32 variant using PCR amplification and gel electrophoresis. In addition, 200 Emiratis have been screened for other SNPs using Sanger DNA sequencing. RESULTS Among Emiratis, the allele frequency of the CCR5∆32 variant has been found to be 0.002. In addition, two variants L55Q and A159 were found at a frequency of 0.002. Moreover, the prevalence of the CCR5∆32 variant in Tunisians was estimated to be 0.013 which is relatively higher than its frequency in Emiratis but lower than Europeans. CONCLUSION We conclude that the allele frequency of the most critical CCR5 polymorphism (∆32) is extremely low among Emiratis compared to other Arabs and North Europeans. In addition, very low allele frequencies of other CCR5 polymorphisms have been detected among Emiratis.
Birth Defects Research Part A-clinical and Molecular Teratology | 2013
Salma Ben-Salem; Jozef Hertecant; Aisha M. Al-Shamsi; Bassam R. Ali; Lihadh Al-Gazali
BACKGROUND Geleophysic dysplasia (GD) is an autosomal recessive disorder characterized by short stature, brachydactyly, stiff joints, thick skin, and cardiac valvular abnormalities that are often responsible for early death. Mutations in ADAMTSL2 and FBN1 genes have been shown to cause GD due to the dysregulation of transforming growth factor-β signaling pathways. Small numbers of mutations in ADAMTSL2 have been reported so far in patients with GD type 1 (GD1). METHODS In this study, we clinically evaluated two children from two consanguineous Arab families living in the United Arab Emirates with GD1. In addition we have sequenced all the coding exons of ADAMTSL2 gene using Sanger sequencing. RESULTS The two patients exhibited most of the typical features of this rare bone dysplasia. Molecular analysis of the ADAMTSL2 gene revealed two novel homozygous missense mutations (c.938T>C, p.M313T and c.499G>A, p.D167N). The mutations segregated well in the studied families with the parents being heterozygous. In addition, bioinformatics analyses showed that these mutations are affecting conserved amino acids residues and thus strongly support their pathogenicity. CONCLUSION We describe the clinical phenotypes of two patients with GD1 that are caused by two novel homozygous missense mutations in the ADAMTSL2 gene.
American Journal of Medical Genetics Part A | 2016
Salma Ben-Salem; Nara Sobreira; Nadia Akawi; Aisha M. Al-Shamsi; Anne John; Thachillath Pramathan; David Valle; Bassam R. Ali; Lihadh Al-Gazali
The gene encoding the AT‐rich interaction domain‐containing protein 1B (ARID1B) has recently been shown to be one of the most frequently mutated genes in patients with intellectual disability (ID). The phenotypic spectrums associated with variants in this gene vary widely ranging for mild to severe non‐specific ID to Coffin–Siris syndrome. In this study, we evaluated three children from a consanguineous Emirati family affected with ID and dysmorphic features. Genomic DNA from all affected siblings was analyzed using CGH array and whole‐exome sequencing (WES). Based on a recessive mode of inheritance, homozygous or compound heterozygous variants shared among all three affected children could not be identified. However, further analysis revealed a heterozygous variant (c.4318C>T; p.Q1440*) in the three affected children in an autosomal dominant ID causing gene, ARID1B. This variant was absent in peripheral blood samples obtained from both parents and unaffected siblings. Therefore, we propose that the most likely explanation for this situation is that one of the parents is a gonadal mosaic for the variant. To the best of our knowledge, this is the first report of a gonadal mosaicism inheritance of an ARID1B variant leading to familial ID recurrence.