Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salmaan A. Khan is active.

Publication


Featured researches published by Salmaan A. Khan.


Trends in Biotechnology | 2010

Glucose metabolism in mammalian cell culture: new insights for tweaking vintage pathways

Bhanu Chandra Mulukutla; Salmaan A. Khan; Alex J. Lange; Wei Shou Hu

Cultured mammalian cells are major vehicles for producing therapeutic proteins, and energy metabolism in those cells profoundly affects process productivity. The characteristic high glucose consumption and lactate production of industrial cell lines as well as their adverse effects on productivity have been the target of both cell line and process improvement for several decades. Recent research advances have shed new light on regulation of glucose metabolism and its links to cell proliferation. This review highlights our current understanding in this area of crucial importance in bioprocessing and further discusses strategies for harnessing new findings toward process enhancement through the manipulation of cellular energy metabolism.


Diabetes | 2015

ATGL-Catalyzed Lipolysis Regulates SIRT1 to Control PGC-1α/PPAR-α Signaling

Salmaan A. Khan; Aishwarya Sathyanarayan; Mara T. Mashek; Kuok Teong Ong; Edith E. Wollaston-Hayden; Douglas G. Mashek

Sirtuin 1 (SIRT1), an NAD+-dependent protein deacetylase, regulates a host of target proteins, including peroxisome proliferator–activated receptor (PPAR)-γ coactivator-1α (PGC-1α), a transcriptional coregulator that binds to numerous transcription factors in response to deacetylation to promote mitochondrial biogenesis and oxidative metabolism. Our laboratory and others have shown that adipose triglyceride lipase (ATGL) increases the activity of the nuclear receptor PPAR-α, a PGC-1α binding partner, to promote fatty acid oxidation. Fatty acids bind and activate PPAR-α; therefore, it has been presumed that fatty acids derived from ATGL-catalyzed lipolysis act as PPAR-α ligands. We provide an alternate mechanism that links ATGL to PPAR-α signaling. We show that SIRT1 deacetylase activity is positively regulated by ATGL to promote PGC-1α signaling. In addition, ATGL mediates the effects of β-adrenergic signaling on SIRT1 activity, and PGC-1α and PPAR-α target gene expression independent of changes in NAD+. Moreover, SIRT1 is required for the induction of PGC-1α/PPAR-α target genes and oxidative metabolism in response to increased ATGL-mediated lipolysis. Taken together, this work identifies SIRT1 as a critical node that links β-adrenergic signaling and lipolysis to changes in the transcriptional regulation of oxidative metabolism.


Hepatology | 2015

Hepatic lipid droplet biology: Getting to the root of fatty liver

Douglas G. Mashek; Salmaan A. Khan; Aishwarya Sathyanarayan; Jonathan M. Ploeger; Mallory P. Franklin

Hepatic steatosis is defined by the accumulation of lipid droplets (LDs). Once thought to be only inert energy storage depots, LDs are increasingly recognized as organelles that have important functions in hepatocytes beyond lipid storage. The lipid and protein composition of LDs is highly dynamic and influences their intrinsic metabolism and signaling properties, which ultimately links them to the changes in hepatic function. This concise review highlights recent discoveries in LD biology and unique aspects of hepatic LDs and their role in liver disease. (Hepatology 2015;62:964–967)


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Inhibition of glucokinase translocation by AMP-activated protein kinase is associated with phosphorylation of both GKRP and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase

Mohammed Mukhtar; Victoria A. Payne; Catherine Arden; Andrew Harbottle; Salmaan A. Khan; Alex J. Lange; Loranne Agius

The rate of glucose phosphorylation in hepatocytes is determined by the subcellular location of glucokinase and by its association with its regulatory protein (GKRP) in the nucleus. Elevated glucose concentrations and precursors of fructose 1-phosphate (e.g., sorbitol) cause dissociation of glucokinase from GKRP and translocation to the cytoplasm. In this study, we investigated the counter-regulation of substrate-induced translocation by AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside), which is metabolized by hepatocytes to an AMP analog, and causes activation of AMP-activated protein kinase (AMPK) and depletion of ATP. During incubation of hepatocytes with 25 mM glucose, AICAR concentrations below 200 microM activated AMPK without depleting ATP and inhibited glucose phosphorylation and glucokinase translocation with half-maximal effect at 100-140 microM. Glucose phosphorylation and glucokinase translocation correlated inversely with AMPK activity. AICAR also counteracted translocation induced by a glucokinase activator and partially counteracted translocation by sorbitol. However, AICAR did not block the reversal of translocation (from cytoplasm to nucleus) after substrate withdrawal. Inhibition of glucose-induced translocation by AICAR was greater than inhibition by glucagon and was associated with phosphorylation of both GKRP and the cytoplasmic glucokinase binding protein, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2) on ser-32. Expression of a kinase-active PFK2 variant lacking ser-32 partially reversed the inhibition of translocation by AICAR. Phosphorylation of GKRP by AMPK partially counteracted its inhibitory effect on glucokinase activity, suggesting altered interaction of glucokinase and GKRP. In summary, mechanisms downstream of AMPK activation, involving phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and GKRP are involved in the ATP-independent inhibition of glucose-induced glucokinase translocation by AICAR in hepatocytes.


Biochemical Journal | 2008

A role for PFK-2/FBPase-2, as distinct from fructose 2,6-bisphosphate, in regulation of insulin secretion in pancreatic β-cells

Catherine Arden; Laura J. Hampson; Guo C. Huang; James Shaw; A Aldibbiat; Graham Holliman; Derek Manas; Salmaan A. Khan; Alex J. Lange; Loranne Agius

PFK-2/FBPase-2 (6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase) catalyses the formation and degradation of fructose 2,6-P(2) (fructose 2,6-bisphosphate) and is also a glucokinase-binding protein. The role of fructose 2,6-P(2) in regulating glucose metabolism and insulin secretion in pancreatic beta-cells is unresolved. We down-regulated the endogenous isoforms of PFK-2/FBPase-2 with siRNA (small interfering RNA) and expressed KA (kinase active) and KD (kinase deficient) variants to distinguish between the role of PFK-2/FBPase-2 protein and the role of its product, fructose 2,6-P(2), in regulating beta-cell function. Human islets expressed the PFKFB2 (the gene encoding isoform 2 of the PFK2/FBPase2 protein) and PFKFB3 (the gene encoding isoform 3 of the PFK2/FBPase2 protein) isoforms and mouse islets expressed PFKFB2 at the mRNA level [RT-PCR (reverse transcription-PCR)]. Rat islets expressed PFKFB2 lacking the C-terminal phosphorylation sites. The glucose-responsive MIN6 and INS1E cell lines expressed PFKFB2 and PFKFB3. PFK-2 activity and the cell content of fructose 2,6-P(2) were increased by elevated glucose concentration and during pharmacological activation of AMPK (AMP-activated protein kinase), which also increased insulin secretion. Partial down-regulation of endogenous PFKFB2 and PFKFB3 in INS1E by siRNA decreased PFK-2/FBPase-2 protein, fructose 2,6-P(2) content, glucokinase activity and glucoseinduced insulin secretion. Selective down-regulation of glucose-induced fructose 2,6-P(2) in the absence of down-regulation of PFK-2/FBPase-2 protein, using a KD PFK-2/FBPase-2 variant, resulted in sustained glycolysis and elevated glucose-induced insulin secretion, indicating an over-riding role of PFK-2/FBPase-2 protein, as distinct from its product fructose 2,6-P(2), in potentiating glucose-induced insulin secretion. Whereas down-regulation of PFK-2/FBPase-2 decreased glucokinase activity, overexpression of PFK-2/FBPase-2 only affected glucokinase distribution. It is concluded that PFK-2/FBPase-2 protein rather than its product fructose 2,6-P(2) is the over-riding determinant of glucose-induced insulin secretion through regulation of glucokinase activity or subcellular targeting.


Cell Reports | 2016

Integrated Regulation of Hepatic Lipid and Glucose Metabolism by Adipose Triacylglycerol Lipase and FoxO Proteins

Wenwei Zhang; So Young Bu; Mara T. Mashek; In Sug O-Sullivan; Zakaria Sibai; Salmaan A. Khan; Olga Ilkayeva; Christopher B. Newgard; Douglas G. Mashek; Terry G. Unterman

Metabolism is a highly integrated process that is coordinately regulated between tissues and within individual cells. FoxO proteins are major targets of insulin action and contribute to the regulation of gluconeogenesis, glycolysis, and lipogenesis in the liver. However, the mechanisms by which FoxO proteins exert these diverse effects in an integrated fashion remain poorly understood. We report that FoxO proteins also exert important effects on intrahepatic lipolysis and fatty acid oxidation via the regulation of adipose triacylglycerol lipase (ATGL), which mediates the first step in lipolysis, and its inhibitor, the G0/S1 switch 2 gene (G0S2). We also find that ATGL-dependent lipolysis plays a critical role in mediating diverse effects of FoxO proteins in the liver, including effects on gluconeogenic, glycolytic, and lipogenic gene expression and metabolism. These results indicate that intrahepatic lipolysis plays a critical role in mediating and integrating the regulation of glucose and lipid metabolism downstream of FoxO proteins.


Journal of Lipid Research | 2015

Quantitative analysis of the murine lipid droplet-associated proteome during diet-induced hepatic steatosis

Salmaan A. Khan; Edith E. Wollaston-Hayden; Todd W. Markowski; LeeAnn Higgins; Douglas G. Mashek

Hepatic steatosis is characterized by the accumulation of lipid droplets (LDs), which are composed of a neutral lipid core surrounded by a phospholipid monolayer embedded with many proteins. Although the LD-associated proteome has been investigated in multiple tissues and organisms, the dynamic changes in the murine LD-associated proteome in response to obesity and hepatic steatosis have not been studied. We characterized the hepatic LD-associated proteome of C57BL/6J male mouse livers following high-fat feeding using isobaric tagging for relative and absolute quantification. Of the 1,520 proteins identified with a 5% local false discovery rate, we report a total of 48 proteins that were increased and 52 proteins that were decreased on LDs in response to high-fat feeding. Most notably, ribosomal and endoplasmic reticulum proteins were increased and extracellular and cytosolic proteins were decreased in response to high-fat feeding. Additionally, many proteins involved in fatty acid catabolism or xenobiotic metabolism were enriched in the LD fraction following high-fat feeding. In contrast, proteins involved in glucose metabolism and liver X receptor or retinoid X receptor activation were decreased on LDs of high-fat-fed mice. This study provides insights into unique biological functions of hepatic LDs under normal and steatotic conditions.


Hepatology | 2015

Hepatic lipid droplet biology: Getting to the root of fatty liver: STEATOHEPATITIS/METABOLIC LIVER DISEASE

Douglas G. Mashek; Salmaan A. Khan; Aishwarya Sathyanarayan; Jonathan M. Ploeger; Mallory P. Franklin

Hepatic steatosis is defined by the accumulation of lipid droplets (LDs). Once thought to be only inert energy storage depots, LDs are increasingly recognized as organelles that have important functions in hepatocytes beyond lipid storage. The lipid and protein composition of LDs is highly dynamic and influences their intrinsic metabolism and signaling properties, which ultimately links them to the changes in hepatic function. This concise review highlights recent discoveries in LD biology and unique aspects of hepatic LDs and their role in liver disease. (Hepatology 2015;62:964–967)


Hepatology | 2015

Hepatic lipid droplet biology

Douglas G. Mashek; Salmaan A. Khan; Aishwarya Sathyanarayan; Jonathan M. Ploeger; Mallory P. Franklin

Hepatic steatosis is defined by the accumulation of lipid droplets (LDs). Once thought to be only inert energy storage depots, LDs are increasingly recognized as organelles that have important functions in hepatocytes beyond lipid storage. The lipid and protein composition of LDs is highly dynamic and influences their intrinsic metabolism and signaling properties, which ultimately links them to the changes in hepatic function. This concise review highlights recent discoveries in LD biology and unique aspects of hepatic LDs and their role in liver disease. (Hepatology 2015;62:964–967)


Cell Metabolism | 2005

Enhancing hepatic glycolysis reduces obesity: differential effects on lipogenesis depend on site of glycolytic modulation.

Chaodong Wu; Johnthomas Kang; Li Jen Peng; Honggui Li; Salmaan A. Khan; Christopher J. Hillard; David A. Okar; Alex J. Lange

Collaboration


Dive into the Salmaan A. Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Jen Peng

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge