Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salman Sadullah Usmani is active.

Publication


Featured researches published by Salman Sadullah Usmani.


Nucleic Acids Research | 2016

CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides.

Piyush Agrawal; Sherry Bhalla; Salman Sadullah Usmani; Sandeep Singh; Kumardeep Chaudhary; Gajendra P. S. Raghava; Ankur Gautam

CPPsite 2.0 (http://crdd.osdd.net/raghava/cppsite/) is an updated version of manually curated database (CPPsite) of cell-penetrating peptides (CPPs). The current version holds around 1850 peptide entries, which is nearly two times than the entries in the previous version. The updated data were curated from research papers and patents published in last three years. It was observed that most of the CPPs discovered/ tested, in last three years, have diverse chemical modifications (e.g. non-natural residues, linkers, lipid moieties, etc.). We have compiled this information on chemical modifications systematically in the updated version of the database. In order to understand the structure-function relationship of these peptides, we predicted tertiary structure of CPPs, possessing both modified and natural residues, using state-of-the-art techniques. CPPsite 2.0 also maintains information about model systems (in vitro/in vivo) used for CPP evaluation and different type of cargoes (e.g. nucleic acid, protein, nanoparticles, etc.) delivered by these peptides. In order to assist a wide range of users, we developed a user-friendly responsive website, with various tools, suitable for smartphone, tablet and desktop users. In conclusion, CPPsite 2.0 provides significant improvements over the previous version in terms of data content.


Nucleic Acids Research | 2016

SATPdb: A Database of Structurally Annotated Therapeutic Peptides

Sandeep Singh; Kumardeep Chaudhary; Sandeep Kumar Dhanda; Sherry Bhalla; Salman Sadullah Usmani; Ankur Gautam; Abhishek Tuknait; Piyush Agrawal; Deepika Mathur; Gajendra P. S. Raghava

SATPdb (http://crdd.osdd.net/raghava/satpdb/) is a database of structurally annotated therapeutic peptides, curated from 22 public domain peptide databases/datasets including 9 of our own. The current version holds 19192 unique experimentally validated therapeutic peptide sequences having length between 2 and 50 amino acids. It covers peptides having natural, non-natural and modified residues. These peptides were systematically grouped into 10 categories based on their major function or therapeutic property like 1099 anticancer, 10585 antimicrobial, 1642 drug delivery and 1698 antihypertensive peptides. We assigned or annotated structure of these therapeutic peptides using structural databases (Protein Data Bank) and state-of-the-art structure prediction methods like I-TASSER, HHsearch and PEPstrMOD. In addition, SATPdb facilitates users in performing various tasks that include: (i) structure and sequence similarity search, (ii) peptide browsing based on their function and properties, (iii) identification of moonlighting peptides and (iv) searching of peptides having desired structure and therapeutic activities. We hope this database will be useful for researchers working in the field of peptide-based therapeutics.


PLOS ONE | 2017

THPdb: Database of FDA-approved peptide and protein therapeutics

Salman Sadullah Usmani; Gursimran Bedi; Jesse S. Samuel; Sandeep Singh; Sourav Kalra; Pawan Kumar; Anjuman Arora Ahuja; Meenu Sharma; Ankur Gautam; Gajendra P. S. Raghava

THPdb (http://crdd.osdd.net/raghava/thpdb/) is a manually curated repository of Food and Drug Administration (FDA) approved therapeutic peptides and proteins. The information in THPdb has been compiled from 985 research publications, 70 patents and other resources like DrugBank. The current version of the database holds a total of 852 entries, providing comprehensive information on 239 US-FDA approved therapeutic peptides and proteins and their 380 drug variants. The information on each peptide and protein includes their sequences, chemical properties, composition, disease area, mode of activity, physical appearance, category or pharmacological class, pharmacodynamics, route of administration, toxicity, target of activity, etc. In addition, we have annotated the structure of most of the protein and peptides. A number of user-friendly tools have been integrated to facilitate easy browsing and data analysis. To assist scientific community, a web interface and mobile App have also been developed.


Scientific Reports | 2016

ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis.

Amit Gupta; Karambir Kaur; Akanksha Rajput; Sandeep Kumar Dhanda; Manika Sehgal; Md. Shoaib Khan; Isha Monga; Showkat Ahmad Dar; Sandeep Singh; Gandharva Nagpal; Salman Sadullah Usmani; Anamika Thakur; Gazaldeep Kaur; Shivangi Sharma; Aman Bhardwaj; Abid Qureshi; Gajendra P. S. Raghava; Manoj Kumar

Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates.


Briefings in Bioinformatics | 2016

Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics

Sandeep Kumar Dhanda; Salman Sadullah Usmani; Piyush Agrawal; Gandharva Nagpal; Ankur Gautam; Gajendra P. S. Raghava

The conventional approach for designing vaccine against a particular disease involves stimulation of the immune system using the whole pathogen responsible for the disease. In the post-genomic era, a major challenge is to identify antigenic regions or epitopes that can stimulate different arms of the immune system. In the past two decades, numerous methods and databases have been developed for designing vaccine or immunotherapy against various pathogen-causing diseases. This review describes various computational resources important for designing subunit vaccines or epitope-based immunotherapy. First, different immunological databases are described that maintain epitopes, antigens and vaccine targets. This is followed by in silico tools used for predicting linear and conformational B-cell epitopes required for activating humoral immunity. Finally, information on T-cell epitope prediction methods is provided that includes indirect methods like prediction of Major Histocompatibility Complex and transporter-associated protein binders. Different studies for validating the predicted epitopes are also examined critically. This review enlists novel in silico resources and tools available for predicting humoral and cell-mediated immune potential. These predicted epitopes could be used for designing epitope-based vaccines or immunotherapy as they may activate the adaptive immunity. Authors emphasized the need to develop tools for the prediction of adjuvants to activate innate and adaptive immune system simultaneously. In addition, attention has also been given to novel prediction methods to predict general therapeutic properties of peptides like half-life, cytotoxicity and immune toxicity.


Scientific Reports | 2017

Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential

Gandharva Nagpal; Salman Sadullah Usmani; Sandeep Kumar Dhanda; Harpreet Kaur; Sandeep Singh; Meenu Sharma; Gajendra P. S. Raghava

In the past, numerous methods have been developed to predict MHC class II binders or T-helper epitopes for designing the epitope-based vaccines against pathogens. In contrast, limited attempts have been made to develop methods for predicting T-helper epitopes/peptides that can induce a specific type of cytokine. This paper describes a method, developed for predicting interleukin-10 (IL-10) inducing peptides, a cytokine responsible for suppressing the immune system. All models were trained and tested on experimentally validated 394 IL-10 inducing and 848 non-inducing peptides. It was observed that certain types of residues and motifs are more frequent in IL-10 inducing peptides than in non-inducing peptides. Based on this analysis, we developed composition-based models using various machine-learning techniques. Random Forest-based model achieved the maximum Matthews’s Correlation Coefficient (MCC) value of 0.59 with an accuracy of 81.24% developed using dipeptide composition. In order to facilitate the community, we developed a web server “IL-10pred”, standalone packages and a mobile app for designing IL-10 inducing peptides (http://crdd.osdd.net/raghava/IL-10pred/).


Scientific Reports | 2017

CancerPDF: A repository of cancer-associated peptidome found in human biofluids

Sherry Bhalla; Ruchi Verma; Harpreet Kaur; Rajesh Kumar; Salman Sadullah Usmani; Suresh Kumar Sharma; Gajendra P. S. Raghava

CancerPDF (Cancer Peptidome Database of bioFluids) is a comprehensive database of endogenous peptides detected in the human biofluids. The peptidome patterns reflect the synthesis, processing and degradation of proteins in the tissue environment and therefore can act as a gold mine to probe the peptide-based cancer biomarkers. Although an extensive data on cancer peptidome has been generated in the recent years, lack of a comprehensive resource restrains the facility to query the growing community knowledge. We have developed the cancer peptidome resource named CancerPDF, to collect and compile all the endogenous peptides isolated from human biofluids in various cancer profiling studies. CancerPDF has 14,367 entries with 9,692 unique peptide sequences corresponding to 2,230 unique precursor proteins from 56 high-throughput studies for ~27 cancer conditions. We have provided an interactive interface to query the endogenous peptides along with the primary information such as m/z, precursor protein, the type of cancer and its regulation status in cancer. To add-on, many web-based tools have been incorporated, which comprise of search, browse and similarity identification modules. We consider that the CancerPDF will be an invaluable resource to unwind the potential of peptidome-based cancer biomarkers. The CancerPDF is available at the web address http://crdd.osdd.net/raghava/cancerpdf/.


Frontiers in Microbiology | 2018

Prediction of Cell-Penetrating Potential of Modified Peptides Containing Natural and Chemically Modified Residues

Vinod Kumar; Piyush Agrawal; Rajesh Kumar; Sherry Bhalla; Salman Sadullah Usmani; Grish C. Varshney; Gajendra P. S. Raghava

Designing drug delivery vehicles using cell-penetrating peptides is a hot area of research in the field of medicine. In the past, number of in silico methods have been developed for predicting cell-penetrating property of peptides containing natural residues. In this study, first time attempt has been made to predict cell-penetrating property of peptides containing natural and modified residues. The dataset used to develop prediction models, include structure and sequence of 732 chemically modified cell-penetrating peptides and an equal number of non-cell penetrating peptides. We analyzed the structure of both class of peptides and observed that positive charge groups, atoms, and residues are preferred in cell-penetrating peptides. In this study, models were developed to predict cell-penetrating peptides from its tertiary structure using a wide range of descriptors (2D, 3D descriptors, and fingerprints). Random Forest model developed by using PaDEL descriptors (combination of 2D, 3D, and fingerprints) achieved maximum accuracy of 95.10%, MCC of 0.90 and AUROC of 0.99 on the main dataset. The performance of model was also evaluated on validation/independent dataset which achieved AUROC of 0.98. In order to assist the scientific community, we have developed a web server “CellPPDMod” for predicting the cell-penetrating property of modified peptides (http://webs.iiitd.edu.in/raghava/cellppdmod/).


Database | 2018

AntiTbPdb: a knowledgebase of anti-tubercular peptides

Salman Sadullah Usmani; Rajesh Kumar; Vinod Kumar; Sandeep Singh; Gajendra P. S. Raghava

Abstract Tuberculosis is a global menace, caused by Mycobacterium tuberculosis, responsible for millions of premature deaths every year. In the era of drug-resistant tuberculosis, peptide-based therapeutics may provide alternate to small molecule based drugs. In order to create knowledgebase, AntiTbPdb (http://webs.iiitd.edu.in/raghava/antitbpdb/), experimentally validated anti-tubercular and anti-mycobacterial peptides were compiled from literature. We curate 10 652 research articles and 35 patents to extract anti-tubercular peptides and annotate these peptides manually. This knowledgebase has 1010 entries, each entry provides extensive information about an anti-tubercular peptide such as sequence, chemical modification, chirality, nature and source of origin. The tertiary structure of these anti-tubercular peptides containing natural as well as chemically modified residues was predicted using PEPstrMOD and I-TASSER. In addition to structural information, database maintains other properties of peptides like physiochemical properties. Numerous web-based tools have been integrated for data retrieval, browsing, sequence similarity search and peptide mapping. In order to assist wide range of user, we developed a responsive website suitable for smartphone, tablet and desktop. Database URL: http://webs.iiitd.edu.in/raghava/antitbpdb/


Archive | 2018

In Silico Tools and Databases for Designing Peptide-Based Vaccine and Drugs

Salman Sadullah Usmani; Rajesh Kumar; Sherry Bhalla; Vinod Kumar; Gajendra P. S. Raghava

The prolonged conventional approaches of drug screening and vaccine designing prerequisite patience, vigorous effort, outrageous cost as well as additional manpower. Screening and experimentally validating thousands of molecules for a specific therapeutic property never proved to be an easy task. Similarly, traditional way of vaccination includes administration of either whole or attenuated pathogen, which raises toxicity and safety issues. Emergence of sequencing and recombinant DNA technology led to the epitope-based advanced vaccination concept, i.e., small peptides (epitope) can stimulate specific immune response. Advent of bioinformatics proved to be an adjunct in vaccine and drug designing. Genomic study of pathogens aid to identify and analyze the protective epitope. A number of in silico tools have been developed to design immunotherapy as well as peptide-based drugs in the last two decades. These tools proved to be a catalyst in drug and vaccine designing. This review solicits therapeutic peptide databases as well as in silico tools developed for designing peptide-based vaccine and drugs.

Collaboration


Dive into the Salman Sadullah Usmani's collaboration.

Top Co-Authors

Avatar

Gajendra P. S. Raghava

Indraprastha Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Gandharva Nagpal

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Piyush Agrawal

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Rajesh Kumar

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Sherry Bhalla

Indraprastha Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Ankur Gautam

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Sandeep Singh

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Vinod Kumar

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Sandeep Kumar Dhanda

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Harpreet Kaur

Council of Scientific and Industrial Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge