Salomé Prat
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Salomé Prat.
Nature | 2008
Miguel de Lucas; Jean-Michel Davière; Mariana Rodríguez-Falcón; Mariela Pontin; Juan Manuel Iglesias-Pedraz; Séverine Lorrain; Christian Fankhauser; Miguel A. Blázquez; Elena Titarenko; Salomé Prat
Cell elongation during seedling development is antagonistically regulated by light and gibberellins (GAs). Light induces photomorphogenesis, leading to inhibition of hypocotyl growth, whereas GAs promote etiolated growth, characterized by increased hypocotyl elongation. The mechanism underlying this antagonistic interaction remains unclear. Here we report on the central role of the Arabidopsis thaliana nuclear transcription factor PIF4 (encoded by PHYTOCHROME INTERACTING FACTOR 4) in the positive control of genes mediating cell elongation and show that this factor is negatively regulated by the light photoreceptor phyB (ref. 4) and by DELLA proteins that have a key repressor function in GA signalling. Our results demonstrate that PIF4 is destabilized by phyB in the light and that DELLAs block PIF4 transcriptional activity by binding the DNA-recognition domain of this factor. We show that GAs abrogate such repression by promoting DELLA destabilization, and therefore cause a concomitant accumulation of free PIF4 in the nucleus. Consistent with this model, intermediate hypocotyl lengths were observed in transgenic plants over-accumulating both DELLAs and PIF4. Destabilization of this factor by phyB, together with its inactivation by DELLAs, constitutes a protein interaction framework that explains how plants integrate both light and GA signals to optimize growth and development in response to changing environments.
Planta | 1993
Hugo Peña-Cortés; Tanja Albrecht; Salomé Prat; Elmar W. Weiler; Lothar Willmitzer
Jasmonic acid (JA) and its methyl ester, like mechanical wounding, strongly induce accumulation of proteinase inhibitor II (Pin2) in tomato and potato leaves. In plants, JA is synthesized from α-linolenic acid by a lipoxygenase (LOX)-mediated oxygenation leading to 13-hydroxyperoxylinolenic acid (13-HPLA) which is then subsequently transformed to JA by the action of hydroperoxide-dehydrase activity and additional modification steps. Both the chemical structure as well as the biosynthetic pathway of JA resemble those of the mammalian eicosanoids (prostaglandins and leukotrienes) which are derived from LOX-and cyclooxygenase (COX)-mediated reactions. To assess the role of endogenous JA in the wound response, detached tomato (Lycopersicon esculentum Mill.) leaves were supplied with different LOX and COX inhibitors and the expression of the wound-induced genes for Pin2 (Pin2), cathepsin D inhibitor (Cdi) and threonine deaminase (Td) was analyzed. Lipoxygenase inhibitors as well as some COX inhibitors blocked the wound-induced accumulation of Pin2, Cdi and Td mRNA. Quantitation of endogenous levels of JA showed that aspirin blocks the increase of this phytohormone normally observed as a result of wounding. Linolenic acid and 13-HPLA do not induce the expression of Pin2, Cdi and Td in the presence of aspirin. However, 12-oxo-phytodienoic acid and jasmonic acid are able to overcome the inhibitory effect of this substance. These results strongly indicate that aspirin prevents wound-induced gene activation by inhibiting the hydroxyperoxide-dehydrase activity that mediates the conversion of 13-HPLA to 12-oxo-phytodienoic acid.
The Plant Cell | 1992
Thomas Hildmann; Marcus Ebneth; Hugo Peña-Cortés; José J. Sánchez-Serrano; Lothar Willmitzer; Salomé Prat
Exogenous application of abscisic acid (ABA) has been shown to induce a systemic pattern of proteinase inhibitor II (pin2) mRNA accumulation identical to that induced by mechanical wounding. Evidence is presented that the ABA-specific response is not restricted to pin2 genes but appears to be part of a general reaction to wound stress. Four other wound-induced, ABA-responsive genes that encode two additional proteinase inhibitors, the proteolytic enzyme leucine aminopeptidase, and the biosynthetic enzyme threonine deaminase were isolated from potato plants. Wounding or treatment with ABA resulted in a pattern of accumulation of these mRNAs very similar to that of pin2. ABA-deficient plants did not accumulate any of the mRNAs upon wounding, although they showed normal levels of expression upon ABA treatment. Also, application of methyl jasmonate (MeJA) induced a strong accumulation of these transcripts, both in wild-type and in ABA-deficient plants, thus supporting a role for jasmonic acid as an intermediate in the signaling pathway that leads from ABA accumulation in response to wounding to the transcriptional activation of the genes.
Nature | 2011
Cristina Navarro; José A. Abelenda; Eduard Cruz-Oró; Carlos A. Cuéllar; Shojiro Tamaki; Javier Silva; Ko Shimamoto; Salomé Prat
Seasonal fluctuations in day length regulate important aspects of plant development such as the flowering transition or, in potato (Solanum tuberosum), the formation of tubers. Day length is sensed by the leaves, which produce a mobile signal transported to the shoot apex or underground stems to induce a flowering transition or, respectively, a tuberization transition. Work in Arabidopsis, tomato and rice (Oryza sativa) identified the mobile FLOWERING LOCUS T (FT) protein as a main component of the long-range ‘florigen’, or flowering hormone, signal. Here we show that expression of the Hd3a gene, the FT orthologue in rice, induces strict short-day potato types to tuberize in long days. Tuber induction is graft transmissible and the Hd3a–GFP protein is detected in the stolons of grafted plants, transport of the fusion protein thus correlating with tuber formation. We provide evidence showing that the potato floral and tuberization transitions are controlled by two different FT-like paralogues (StSP3D and StSP6A) that respond to independent environmental cues, and show that an autorelay mechanism involving CONSTANS modulates expression of the tuberization-control StSP6A gene.
Transgenic Research | 2003
Marta I. Hernández; Maria Pla; Teresa Esteve; Salomé Prat; Pere Puigdomènech; Alejandro Ferrando
The increasing presence of transgenic plant derivatives in a wide range of animal and human consumables has provoked in western Europe a strong demand for appropriate detection methods to evaluate the existence of transgenic elements. Among the different techniques currently used, the real-time quantitative PCR is a powerful technology well adapted to the mandatory labeling requirements in the European Union (EU). The use of transgene flanking genomic sequences has recently been suggested as a means to avoid ambiguous results both in qualitative and quantitative PCR-based technologies. In this study we report the identification of genomic sequences adjacent to the 3′-integration site of event MON810 in transgenic maize. This genetically modified crop contains transgene sequences leading to ectopic expression of a synthetic CryIA(b) endotoxin which confers resistance to lepidopteran insects especially against the European corn borer. The characterization of the genome–transgene junction sequences by means of TAIL-PCR has facilitated the design of a specific, sensitive and accurate quantification method based on TaqMan chemistry. Cloning of event MON810 3′-junction region has also allowed to compare the suitability of plasmid target sequences versus genomic DNA obtained from certified reference materials (CRMs), to prepare standard calibration curves for quantification.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Jaime F. Martínez-García; Ariadna Virgós-Soler; Salomé Prat
Photoperiod controls several responses throughout the plant life cycle, like germination, flowering, tuber formation, onset of bud dormancy, leaf abscission, and cambium activity. From these processes, flowering has been most extensively studied, especially in Arabidopsis thaliana. Photoperiod sensing by the function of photoreceptors and the circadian clock appears to regulate flowering time via Arabidopsis CONSTANS (AtCO), a putative transcription factor that accelerates flowering in response to long days. The genetic factors controlling plant photoperiodic responses other than flowering are little known. However, interspecific grafting experiments demonstrated that the flower-inducing (florigen) and tuber- inducing (tuberigen) signals are functionally exchangeable. Here we show that constitutive overexpression in potato of the Arabidopsis flowering-time gene AtCO impairs tuberization under short-day inductive conditions; AtCO overexpressing lines require prolonged exposure to short days to form tubers. Grafting experiments using these lines indicated that AtCO exerts its inhibitory effect on tuber formation by acting in the leaves. We propose that a conserved photoperiodic functional module may be involved in controlling distinct photoperiod-regulated evocation responses in different species. This module would involve the action of CONSTANS in the production of the elusive and long-distance acting florigen-tuberigen signal(s) in the leaves.
Cell | 2001
Virginia Amador; Elena Monte; José-Luis García-Martínez; Salomé Prat
S. tuberosum ssp. andigena potato plants require short days (SD) for tuberization. We have isolated PHOR1 (photoperiod-responsive 1), which shows upregulated expression in induced leaves (SD). PHOR1 encodes an arm repeat protein with homology to the Drosophila segment polarity protein armadillo. Antisense inhibition of PHOR1 produces a semidwarf phenotype similar to that of GA-deficient plants, and the antisense lines show reduced GA responsiveness combined with a higher endogenous GA content than wild-type plants. Feedback regulation of GA biosynthetic genes is also altered in these lines. Conversely, transgenic lines overexpressing PHOR1 show an enhanced response to GA. GA application induces rapid migration of PHOR1-GFP protein to the nucleus. Thus, PHOR1 appears to be a general component of GA signaling pathways that relocalizes to the nucleus in the presence of GA.
Nature | 2013
Bjorn Kloosterman; José A. Abelenda; Maria Gomez; Marian Oortwijn; Jan de Boer; Krissana Kowitwanich; Beatrix M. Horvath; Herman J. van Eck; Cezary Smaczniak; Salomé Prat; Richard G. F. Visser; Christian W. B. Bachem
Potato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development. We show that this gene belongs to the family of DOF (DNA-binding with one finger) transcription factors and regulates tuberization and plant life cycle length, by acting as a mediator between the circadian clock and the StSP6A mobile tuberization signal. We also show that natural allelic variants evade post-translational light regulation, allowing cultivation outside the geographical centre of origin of potato. Potato is a member of the Solanaceae family and is one of the world’s most important food crops. This annual plant originates from the Andean regions of South America. Potato develops tubers from underground stems called stolons. Its equatorial origin makes potato essentially short-day dependent for tuberization and potato will not make tubers in the long-day conditions of spring and summer in the northern latitudes. When introduced in temperate zones, wild material will form tubers in the course of the autumnal shortening of day-length. Thus, one of the first selected traits in potato leading to a European potato type is likely to have been long-day acclimation for tuberization. Potato breeders can exploit the naturally occurring variation in tuberization onset and life cycle length, allowing varietal breeding for different latitudes, harvest times and markets.
Plant Physiology | 2003
Hao Chen; Faye M. Rosin; Salomé Prat; David J. Hannapel
Using the yeast (Saccharomyces cerevisiae) two-hybrid system and a potato (Solanum tuberosum) KNOX protein, designated POTH1, as bait, we have identified seven distinct interacting proteins from a stolon library of potato. All seven cDNAs are members of the BEL1-like family of transcription factors. Among these proteins, there are at least four regions of high sequence conservation including the homeodomain, the proline-tyrosine-proline three-amino acid loop extension, the SKY box, and a 120-amino acid region upstream from the homeodomain. Through deletion analysis, we identified a protein-binding domain present in the carboxy end of the KNOX domain of POTH1. The protein-binding domain in the BEL1 protein is located in the amino-terminal one-half of the 120-residue conserved region of the BELs. RNA-blot analysis showed differential patterns of RNA accumulation for the BELs in various potato organs. The level of StBEL5 mRNA increased in response to a short-day photoperiod in both leaves and stolons. Similar to sense mutants of POTH1, transgenic lines that overexpressed StBEL5 exhibited enhanced tuber formation even under noninductive conditions. Unlike POTH1 sense lines, however, these BEL lines did not exhibit the extreme leaf and stem morphology characteristic of KNOX overexpressers and displayed a more rapid rate of growth than control plants. Both StBEL5 and POTH1 sense lines exhibited an increase in cytokinin levels in shoot tips. StBEL5 lines also exhibited a decrease in the levels of GA 20-oxidase1 mRNA in stolon tips from long-day plants. Our results demonstrate an interaction between KNOX and BEL1-like transcription factors of potato that may potentially regulate processes of development.
Plant Molecular Biology | 2005
Ashraf Abdeen; Ariadna Virgós; Elisenda Olivella; Josep Villanueva; Xavier F. Avilés; Rosa Gabarra; Salomé Prat
Protease inhibitors have been proposed as potential defense molecules for increased insect resistance in crop plants. Compensatory over-production of insensitive proteases in the insect, however, has limited suitability of these proteins in plant protection, with very high levels of inhibitor required for increased plant resistance. In this study we have examined whether combined used of two inhibitors is effective to prevent this compensatory response. We show that leaf-specific over-expression of the potato PI-II and carboxypeptidase inhibitors (PCI) results in increased resistance to Heliothis obsoleta and Liriomyzatrifolii larvae in homozygote tomato lines expressing high levels (#62;1 the total soluble proteins) of the transgenes. Leaf damage in hemizygous lines for these transformants was, however, more severe than in the controls, thus evidencing a compensation response of the larvae to the lower PI concentrations in these plants. Development of comparable adaptive responses in both insects suggests that insect adaptation does not entail specific recognition of the transgene, but rather represents a general adaptive mechanism triggered in response to the nutritional stress imposed by sub-lethal concentrations of the inhibitors. Combined expression of defense genes with different mechanisms of action rather than combinations of inhibitors may then offer a better strategy in pest management as it should be more effective in overcoming this general adaptive response in the insect.