Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salomon Israel is active.

Publication


Featured researches published by Salomon Israel.


Clinical psychological science | 2014

The p Factor: One General Psychopathology Factor in the Structure of Psychiatric Disorders?

Avshalom Caspi; Renate Houts; Daniel W. Belsky; Sidra Goldman-Mellor; HonaLee Harrington; Salomon Israel; Madeline H. Meier; Sandhya Ramrakha; Idan Shalev; Richie Poulton; Terrie E. Moffitt

Mental disorders traditionally have been viewed as distinct, episodic, and categorical conditions. This view has been challenged by evidence that many disorders are sequentially comorbid, recurrent/chronic, and exist on a continuum. Using the Dunedin Multidisciplinary Health and Development Study, we examined the structure of psychopathology, taking into account dimensionality, persistence, co-occurrence, and sequential comorbidity of mental disorders across 20 years, from adolescence to midlife. Psychiatric disorders were initially explained by three higher-order factors (Internalizing, Externalizing, and Thought Disorder) but explained even better with one General Psychopathology dimension. We have called this dimension the p factor because it conceptually parallels a familiar dimension in psychological science: the g factor of general intelligence. Higher p scores are associated with more life impairment, greater familiality, worse developmental histories, and more compromised early-life brain function. The p factor explains why it is challenging to find causes, consequences, biomarkers, and treatments with specificity to individual mental disorders. Transdiagnostic approaches may improve research.


Genes, Brain and Behavior | 2008

Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA

Ariel Knafo; Salomon Israel; Ariel Darvasi; Rachel Bachner-Melman; Florina Uzefovsky; Lior Cohen; Esti Feldman; Elad Lerer; Efrat Laiba; Yael Raz; Lubov Nemanov; Inga Gritsenko; Christian Dina; Galila Agam; Brian Dean; Gary Bornstein; Richard P. Ebstein

Human altruism is a widespread phenomenon that puzzled evolutionary biologists since Darwin. Economic games illustrate human altruism by showing that behavior deviates from economic predictions of profit maximization. A game that most plainly shows this altruistic tendency is the Dictator Game. We hypothesized that human altruistic behavior is to some extent hardwired and that a likely candidate that may contribute to individual differences in altruistic behavior is the arginine vasopressin 1a (AVPR1a) receptor that in some mammals such as the vole has a profound impact on affiliative behaviors. In the current investigation, 203 male and female university students played an online version of the Dictator Game, for real money payoffs. All subjects and their parents were genotyped for AVPR1a RS1 and RS3 promoter‐region repeat polymorphisms. Parents did not participate in online game playing. As variation in the length of a repetitive element in the vole AVPR1a promoter region is associated with differences in social behavior, we examined the relationship between RS1 and RS3 repeat length (base pairs) and allocation sums. Participants with short versions (308–325 bp) of the AVPR1a RS3 repeat allocated significantly (likelihood ratio = 14.75, P = 0.001, df = 2) fewer shekels to the ‘other’ than participants with long versions (327–343 bp). We also implemented a family‐based association test, UNPHASED, to confirm and validate the correlation between the AVPR1a RS3 repeat and monetary allocations in the dictator game. Dictator game allocations were significantly associated with the RS3 repeat (global P value: likelihood ratio χ2 = 11.73, df = 4, P = 0.019). The association between the AVPR1a RS3 repeat and altruism was also confirmed using two self‐report scales (the Bardi–Schwartz Universalism and Benevolence Value‐expressive Behavior scales). RS3 long alleles were associated with higher scores on both measures. Finally, long AVPR1a RS3 repeats were associated with higher AVPR1a human post‐mortem hippocampal messenger RNA levels than short RS3 repeats (one‐way analysis of variance (ANOVA): F = 15.04, P = 0.001, df = 14) suggesting a functional molecular genetic basis for the observation that participants with the long RS3 repeats allocate more money than participants with the short repeats. This is the first investigation showing that a common human polymorphism, with antecedents in lower mammals, contributes to decision making in an economic game. The finding that the same gene contributing to social bonding in lower animals also appears to operate similarly in human behavior suggests a common evolutionary mechanism.


PLOS ONE | 2009

The oxytocin receptor (OXTR) contributes to prosocial fund allocations in the dictator game and the social value orientations task.

Salomon Israel; Elad Lerer; Idan Shalev; Florina Uzefovsky; Mathias Riebold; Efrat Laiba; Rachel Bachner-Melman; Anat Maril; Gary Bornstein; Ariel Knafo; Richard P. Ebstein

Background Economic games observe social decision making in the laboratory that involves real money payoffs. Previously we have shown that allocation of funds in the Dictator Game (DG), a paradigm that illustrates costly altruistic behavior, is partially determined by promoter-region repeat region variants in the arginine vasopressin 1a receptor gene (AVPR1a). In the current investigation, the gene encoding the related oxytocin receptor (OXTR) was tested for association with the DG and a related paradigm, the Social Values Orientation (SVO) task. Methodology/Principal Findings Association (101 male and 102 female students) using a robust-family based test between 15 single tagging SNPs (htSNPs) across the OXTR was demonstrated with both the DG and SVO. Three htSNPs across the gene region showed significant association with both of the two games. The most significant association was observed with rs1042778 (p = 0.001). Haplotype analysis also showed significant associations for both DG and SVO. Following permutation test adjustment, significance was observed for 2–5 locus haplotypes (p<0.05). A second sample of 98 female subjects was subsequently and independently recruited to play the dictator game and was genotyped for the three significant SNPs found in the first sample. The rs1042778 SNP was shown to be significant for the second sample as well (p = 0.004, Fishers exact test). Conclusions The demonstration that genetic polymorphisms for the OXTR are associated with human prosocial decision making converges with a large body of animal research showing that oxytocin is an important social hormone across vertebrates including Homo sapiens. Individual differences in prosocial behavior have been shown by twin studies to have a substantial genetic basis and the current investigation demonstrates that common variants in the oxytocin receptor gene, an important element of mammalian social circuitry, underlie such individual differences.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Quantification of biological aging in young adults

Daniel W. Belsky; Avshalom Caspi; Renate Houts; Harvey J. Cohen; David L. Corcoran; Andrea Danese; HonaLee Harrington; Salomon Israel; Morgan E. Levine; Jonathan D. Schaefer; Karen Sugden; Ben Williams; Anatoli I. Yashin; Richie Poulton; Terrie E. Moffitt

Significance The global population is aging, driving up age-related disease morbidity. Antiaging interventions are needed to reduce the burden of disease and protect population productivity. Young people are the most attractive targets for therapies to extend healthspan (because it is still possible to prevent disease in the young). However, there is skepticism about whether aging processes can be detected in young adults who do not yet have chronic diseases. Our findings indicate that aging processes can be quantified in people still young enough for prevention of age-related disease, opening a new door for antiaging therapies. The science of healthspan extension may be focused on the wrong end of the lifespan; rather than only studying old humans, geroscience should also study the young. Antiaging therapies show promise in model organism research. Translation to humans is needed to address the challenges of an aging global population. Interventions to slow human aging will need to be applied to still-young individuals. However, most human aging research examines older adults, many with chronic disease. As a result, little is known about aging in young humans. We studied aging in 954 young humans, the Dunedin Study birth cohort, tracking multiple biomarkers across three time points spanning their third and fourth decades of life. We developed and validated two methods by which aging can be measured in young adults, one cross-sectional and one longitudinal. Our longitudinal measure allows quantification of the pace of coordinated physiological deterioration across multiple organ systems (e.g., pulmonary, periodontal, cardiovascular, renal, hepatic, and immune function). We applied these methods to assess biological aging in young humans who had not yet developed age-related diseases. Young individuals of the same chronological age varied in their “biological aging” (declining integrity of multiple organ systems). Already, before midlife, individuals who were aging more rapidly were less physically able, showed cognitive decline and brain aging, self-reported worse health, and looked older. Measured biological aging in young adults can be used to identify causes of aging and evaluate rejuvenation therapies.


Annals of the New York Academy of Sciences | 2009

Arginine Vasopressin and Oxytocin Modulate Human Social Behavior

Richard P. Ebstein; Salomon Israel; Elad Lerer; Florina Uzefovsky; Idan Shalev; Inga Gritsenko; Mathias Riebold; Shahaf Salomon; Nurit Yirmiya

Increasing evidence suggests that two nonapeptides, arginine vasopressin and oxytocin, shape human social behavior in both nonclinical and clinical subjects. Evidence is discussed that in autism spectrum disorders genetic polymorphisms in the vasopressin–oxytocin pathway, notably the arginine vasopressin receptor 1a (AVPR1a), the oxytocin receptor (OXTR), neurophysin I and II, and CD38 (recently shown to be critical for social behavior by mediating oxytocin secretion) contribute to deficits in socialization skills in this group of patients. We also present first evidence that CD38 expression in lymphoblastoid cells derived from subjects diagnosed with autism is correlated with social skill phenotype inventoried by the Vineland Adaptive Behavioral Scales. Additionally, we discuss molecular genetic evidence that in nonclinical subjects both AVPR1a and OXTR genes contribute to prosocial or altruistic behavior inventoried by two experimental paradigms, the dictator game and social values orientation. The role of the AVPR1a is also analyzed in prepulse inhibition. Prepulse inhibition of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. First results are presented showing that intranasal administration of arginine vasopressin increases salivary cortisol levels in the Trier Social Stress test. To summarize, accumulating studies employing a broad array of cutting‐edge tools in psychology, neuroeconomics, molecular genetics, pharmacology, electrophysiology, and brain imaging are beginning to elaborate the intriguing role of oxytocin and arginine vasopressin in human social behavior. We expect that future studies will continue this advance and deepen our understanding of these complex events.


Psychoneuroendocrinology | 2009

BDNF Val66Met polymorphism is associated with HPA axis reactivity to psychological stress characterized by genotype and gender interactions

Idan Shalev; Elad Lerer; Salomon Israel; Florina Uzefovsky; Inga Gritsenko; David Mankuta; Richard P. Ebstein; Marsha Kaitz

BACKGROUND A key protein in maintaining neuronal integrity throughout the life span is brain-derived neurotrophic factor (BDNF). The BDNF gene is characterized by a functional polymorphism, which has been associated with stress-related disorders such as anxiety-related syndromes and depression, prompting us to examine individual responses by Genotype and Sex to a standardized social stress paradigm. Gender differences in BDNFxstress responses were posited because estrogen induces synthesis of BDNF in several brain regions. METHODS 97 university students (51 females and 46 males) participated in a social stress procedure (Trier Social Stress Test, TSST). Indices of stress were derived from repeated measurement of cortisol, blood pressure, and heart rate during the TSST. All subjects were genotyped for the Val66Met polymorphism. RESULTS Tests of within-subject effects showed a significant three-way interaction (SPSS GLM repeated measures: Time (eight levels)xBDNF (val/val, val/met)xSex: p=0.0002), which reflects gender differences in the pattern of cortisol rise and decline during the social challenge. In male subjects, val/val homozygotes showed a greater rise in salivary cortisol than val/met heterozygotes. In female subjects, there was a trend for the opposite response, which is significant when area under the curve increase (AUCi) was calculated for the val/val homozygotes to show the lowest rise. Overall, the same pattern of results was observed for blood pressure and heart rate. CONCLUSIONS These results indicate that a common, functionally significant polymorphism in the BDNF gene modulates HPA axis reactivity and regulation during the TSST differently in men and women. Findings may be related to gender differences in reactivity and vulnerability to social stress.


Psychoneuroendocrinology | 2010

Intranasal oxytocin modulates EEG mu/alpha and beta rhythms during perception of biological motion

Anat Perry; Shlomo Bentin; Idan Shalev; Salomon Israel; Florina Uzefovsky; Dori Bar-On; Richard P. Ebstein

Oxytocin (OT) plays a determining role in social and pair bonding in many vertebrates and increasing evidence suggests it is a social hormone also in humans. Indeed, intranasal administration of OT modulates several social cognitive processes in humans. Electrophysiological studies in humans associated the suppression of EEG in the mu/alpha and beta bands with perception of biological motion and social stimuli. It has been suggested that mu and beta suppression over sensory-motor regions reflects a resonance system in the human brain analogous to mirror neurons in the monkey. We therefore hypothesized that OT, a social hormone, would enhance this suppression, hence, for the first time, link the action of this neuropeptide with a human correlate of mirror neuron activity. Twenty-four students were administered 24 IU of OT or placebo intranasally in a robust, double-blind within-subject design. 45 min later participants were shown a point-light display of continuous biological motion of a human figures walk. In the 8-10 Hz (low alpha/mu band) and in the 15-25 Hz beta band, a significant main effect of treatment showed that suppression was significantly enhanced in the OT versus the placebo conditions and that this suppression was widespread across the scalp. These results are a first step linking OT to the modulation of EEG rhythms in humans, suggesting that OT may have a role in allocating cortical resources to social tasks partly mediated by mirror neuron activity.


Progress in Brain Research | 2008

Molecular genetic studies of the arginine vasopressin 1a receptor (AVPR1a) and the oxytocin receptor (OXTR) in human behaviour: from autism to altruism with some notes in between

Salomon Israel; Elad Lerer; Idan Shalev; Florina Uzefovsky; Mathias Reibold; Rachel Bachner-Melman; Roni Y. Granot; Gary Bornstein; Ariel Knafo; Nurit Yirmiya; Richard P. Ebstein

Converging evidence from both human and animal studies has highlighted the pervasive role of two neuropeptides, oxytocin (OXT) and arginine vasopressin (AVP), in mammalian social behaviours. Recent molecular genetic studies of the human arginine vasopressin 1a (AVPR1a) and oxytocin (OXTR) receptors have strengthened the evidence regarding the role of these two neuropeptides in a range of normal and pathological behaviours. Significant association between both AVPR1a repeat regions and OXTR single nucleotide polymorphisms (SNPs) with risk for autism has been provisionally shown which was mediated by socialization skills in our study. AVPR1a has also been linked to eating behaviour in both clinical and non-clinical groups, perhaps reflecting the social and ritualistic side of eating behaviour. Evidence also suggests that repeat variations in AVPR1a are associated with two other social domains in Homo sapiens: music and altruism. AVPR1a was associated with dance and musical cognition which we theorize as reflecting the ancient role of this hormone in social interactions executed by vocalization, ritual movement and dyadic (mother-offspring) and group communication. Finally, we have shown that individual differences in allocation of funds in the dictator game, a laboratory game of pure altruism, is predicted by length of the AVPR1a RS3 promoter-region repeat echoing the mechanism of this hormones action in the vole model of affiliative behaviours and facilitation of positive group interactions. While still in its infancy, the current outlook for molecular genetic investigations of AVP-OXT continues to be fascinating. Future studies should profitably focus on pharmacogenomic and genomic imaging strategies facilitated by the ease and efficacy of manipulating AVP-OXT neurotransmission by intranasal administration. Importantly, physiological measures, behavioural paradigms and brain activation can be informed by considering between-group and also within-group individual differences defined by common polymorphisms. Ultimately, investigators should strive to develop a cohesive model explaining how genomic variations are translated into individual and group differences in higher-order social behaviours.


Molecular Psychiatry | 2014

Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder

Idan Shalev; Terrie E. Moffitt; Antony W. Braithwaite; Andrea Danese; Nicholas I. Fleming; Sidra Goldman-Mellor; HonaLee Harrington; Renate Houts; Salomon Israel; Richie Poulton; Stephen P. Robertson; Karen Sugden; Benjamin Williams; Avshalom Caspi

There is evidence that persistent psychiatric disorders lead to age-related disease and premature mortality. Telomere length has emerged as a promising biomarker in studies that test the hypothesis that internalizing psychiatric disorders are associated with accumulating cellular damage. We tested the association between the persistence of internalizing disorders (depression, generalized anxiety disorder and post-traumatic stress disorder) and leukocyte telomere length (LTL) in the prospective longitudinal Dunedin Study (n=1037). Analyses showed that the persistence of internalizing disorders across repeated assessments from ages 11 to 38 years predicted shorter LTL at age 38 years in a dose–response manner, specifically in men (β=−0.137, 95% confidence interval (CI): −0.232, −0.042, P=0.005). This association was not accounted for by alternative explanatory factors, including childhood maltreatment, tobacco smoking, substance dependence, psychiatric medication use, poor physical health or low socioeconomic status. Additional analyses using DNA from blood collected at two time points (ages 26 and 38 years) showed that LTL erosion was accelerated among men who were diagnosed with internalizing disorder in the interim (β=−0.111, 95% CI: −0.184, −0.037, P=0.003). No significant associations were found among women in any analysis, highlighting potential sex differences in internalizing-related telomere biology. These findings point to a potential mechanism linking internalizing disorders to accelerated biological aging in the first half of the life course, particularly in men. Because internalizing disorders are treatable, the findings suggest the hypothesis that treating psychiatric disorders in the first half of the life course may reduce the population burden of age-related disease and extend health expectancy.


Autism Research | 2010

Low CD38 expression in lymphoblastoid cells and haplotypes are both associated with autism in a family-based study.

Elad Lerer; Shlomit Levi; Salomon Israel; Maya Yaari; Lubov Nemanov; David Mankuta; Yirmiya Nurit; Richard P. Ebstein

Background: Impairments in social processes characterize one of the core deficits in autism spectrum disorders (ASD) and accumulating evidence suggests that oxytocin neurotransmission is implicated in mediating social adaptation in ASD. Using a mouse model, CD38, a transmembrane protein expressed in immune cells but also in brain, was found to be critical for social behavior via regulation of oxytocin secretion. This prompted us to both examine CD38 expression in human lymphoblastoid cell lines (LBC) as well as to test association between SNPs across the CD38 gene and ASD. Methods: LBCs were derived from 44 ASD lines and 40 “unaffected” parents. Family‐based association (UNPHASED) was examined by genotyping 11 tagging SNPs spanning the CD38 gene identified using HapMap data in 170 trios. An additional SNP (rs3796863) associated in a study by Munesue et al. with ASD was also genotyped. Results: A highly significant reduction in CD38 expression was observed in immortalized lymphocytes derived from ASD subjects compared to their “unaffected” parents (F = 17.2, P = 0.00024, df = 1). Haplotype analysis showed significant association (permutation corrected) between three and seven locus haplotypes and DSM IV ASD in low functioning (IQ<70) subjects. Conclusions: The current report supports a role for CD38 in conferring risk for ASD. Notably, our study shows that this gene is not only associated with low functioning ASD but that CD38 expression is markedly reduced in LBC derived from ASD subjects compared to “unaffected” parents, strengthening the connection between oxytocin and ASD.

Collaboration


Dive into the Salomon Israel's collaboration.

Top Co-Authors

Avatar

Richard P. Ebstein

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Idan Shalev

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Florina Uzefovsky

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ariel Knafo

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elad Lerer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Inga Gritsenko

Memorial Hospital of South Bend

View shared research outputs
Researchain Logo
Decentralizing Knowledge