Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salvador Dura-Bernal is active.

Publication


Featured researches published by Salvador Dura-Bernal.


PLOS ONE | 2012

Top-Down Feedback in an HMAX-Like Cortical Model of Object Perception Based on Hierarchical Bayesian Networks and Belief Propagation

Salvador Dura-Bernal; Thomas Wennekers; Susan L. Denham

Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance). Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom-up interactions, for example, in other sensory modalities.


Pattern Recognition Letters | 2014

Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm

Salvador Dura-Bernal; George L. Chadderdon; Samuel A. Neymotin; Joseph Francis; William W. Lytton

Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving us new tools to better understand the brains use of electrical signals. However, the biomimetic approach presents challenges in integrating technologies across multiple hardware and software platforms, so that the different components can communicate in real-time. We present the first steps in an ongoing effort to integrate a biomimetic spiking neuronal model of motor learning with a robotic arm. The biomimetic model (BMM) was used to drive a simple kinematic two-joint virtual arm in a motor task requiring trial-and-error convergence on a single target. We utilized the output of this model in real time to drive mirroring motion of a Barrett Technology WAM robotic arm through a user datagram protocol (UDP) interface. The robotic arm sent back information on its joint positions, which was then used by a visualization tool on the remote computer to display a realistic 3D virtual model of the moving robotic arm in real time. This work paves the way towards a full closed-loop biomimetic brain-effector system that can be incorporated in a neural decoder for prosthetic control, to be used as a platform for developing biomimetic learning algorithms for controlling real-time devices.


human behavior unterstanding | 2011

Human action categorization using ultrasound micro-doppler signatures

Salvador Dura-Bernal; Guillaume Garreau; Charalambos M. Andreou; Andreas G. Andreou; Julius Georgiou; Thomas Wennekers; Susan L. Denham

The spectrotemporal representation of an ultrasonar wave reflected by an object contains frequency shifts corresponding to the velocity of the objects moving parts, also known as the micro-Doppler signature. The present study describes how the micro-Doppler signature of human subjects, collected in two experiments, can be used to categorize the action performed by the subject. The proposed method segments the spectrogram into temporal events, learns prototypes and categorizes the events using a Nearest Neighbour approach. Results show an average accuracy above 95%, with some categories reaching 100%, and a strong robustness to variations in the model parameters. The low computational cost of the system, together with its high accuracy, even for short length inputs, make it appropriate for a real-time implementation with applications to intelligent surveillance, monitoring and related disciplines.


Frontiers in Pharmacology | 2016

Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex

Samuel A. Neymotin; Salvador Dura-Bernal; Peter Lakatos; Terence D. Sanger; William W. Lytton

A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails.


Frontiers in Neuroscience | 2016

Restoring Behavior via Inverse Neurocontroller in a Lesioned Cortical Spiking Model Driving a Virtual Arm

Salvador Dura-Bernal; Kan Li; Samuel A. Neymotin; Joseph T. Francis; Jose C. Principe; William W. Lytton

Neural stimulation can be used as a tool to elicit natural sensations or behaviors by modulating neural activity. This can be potentially used to mitigate the damage of brain lesions or neural disorders. However, in order to obtain the optimal stimulation sequences, it is necessary to develop neural control methods, for example by constructing an inverse model of the target system. For real brains, this can be very challenging, and often unfeasible, as it requires repeatedly stimulating the neural system to obtain enough probing data, and depends on an unwarranted assumption of stationarity. By contrast, detailed brain simulations may provide an alternative testbed for understanding the interactions between ongoing neural activity and external stimulation. Unlike real brains, the artificial system can be probed extensively and precisely, and detailed output information is readily available. Here we employed a spiking network model of sensorimotor cortex trained to drive a realistic virtual musculoskeletal arm to reach a target. The network was then perturbed, in order to simulate a lesion, by either silencing neurons or removing synaptic connections. All lesions led to significant behvaioral impairments during the reaching task. The remaining cells were then systematically probed with a set of single and multiple-cell stimulations, and results were used to build an inverse model of the neural system. The inverse model was constructed using a kernel adaptive filtering method, and was used to predict the neural stimulation pattern required to recover the pre-lesion neural activity. Applying the derived neurostimulation to the lesioned network improved the reaching behavior performance. This work proposes a novel neurocontrol method, and provides theoretical groundwork on the use biomimetic brain models to develop and evaluate neurocontrollers that restore the function of damaged brain regions and the corresponding motor behaviors.


Journal of Computational Surgery | 2014

Towards real-time communication between in vivo neurophysiological data sources and simulator-based brain biomimetic models.

Giljae Lee; Andréa M. Matsunaga; Salvador Dura-Bernal; Wenjie Zhang; William W. Lytton; Joseph T. Francis; José A. B. Fortes

Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One approach is to utilize brain biomimetic models (BMMs) to develop and instantiate these algorithms. These then must be connected as hybrid systems in order to interface the BMM with in vivo data acquisition devices and prosthetic devices. The combined system then provides a test bed for neuroprosthetic rehabilitative solutions and medical devices for the repair and enhancement of damaged brain. We propose here a computer network-based design for this purpose, detailing its internal modules and data flows. We describe a prototype implementation of the design, enabling interaction between the Plexon Multichannel Acquisition Processor (MAP) server, a commercial tool to collect signals from microelectrodes implanted in a live subject and a BMM, a NEURON-based model of sensorimotor cortex capable of controlling a virtual arm. The prototype implementation supports an online mode for real-time simulations, as well as an offline mode for data analysis and simulations without real-time constraints, and provides binning operations to discretize continuous input to the BMM and filtering operations for dealing with noise. Evaluation demonstrated that the implementation successfully delivered monkey spiking activity to the BMM through LAN environments, respecting real-time constraints.


Neural Computation | 2016

Simulation neurotechnologies for advancing brain research: Parallelizing large networks in neuron

William W. Lytton; Alexandra Seidenstein; Salvador Dura-Bernal; Robert A. McDougal; Felix Schürmann; Michael L. Hines

Large multiscale neuronal network simulations are of increasing value as more big data are gathered about brain wiring and organization under the auspices of a current major research initiative, such as Brain Research through Advancing Innovative Neurotechnologies. The development of these models requires new simulation technologies. We describe here the current use of the NEURON simulator with message passing interface (MPI) for simulation in the domain of moderately large networks on commonly available high-performance computers (HPCs). We discuss the basic layout of such simulations, including the methods of simulation setup, the run-time spike-passing paradigm, and postsimulation data storage and data management approaches. Using the Neuroscience Gateway, a portal for computational neuroscience that provides access to large HPCs, we benchmark simulations of neuronal networks of different sizes (500–100,000 cells), and using different numbers of nodes (1–256). We compare three types of networks, composed of either Izhikevich integrate-and-fire neurons (I&F), single-compartment Hodgkin-Huxley (HH) cells, or a hybrid network with half of each. Results show simulation run time increased approximately linearly with network size and decreased almost linearly with the number of nodes. Networks with I&F neurons were faster than HH networks, although differences were small since all tested cells were point neurons with a single compartment.


Frontiers in Neurorobotics | 2015

Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.

Salvador Dura-Bernal; Xianlian Zhou; Samuel A. Neymotin; Andrzej Przekwas; Joseph T. Francis; William W. Lytton

Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of limb prosthetics.


ieee signal processing in medicine and biology symposium | 2013

Virtual musculoskeletal arm and robotic arm driven by a biomimetic model of sensorimotor cortex with reinforcement learning

Salvador Dura-Bernal; George L. Chadderdon; Samuel A. Neymotin; Xianlian Zhou; Andrzej Przekwas; Joseph T. Francis; William W. Lytton

Neocortical mechanisms of learning sensorimotor control involve a complex series of interactions at multiple levels, from synaptic mechanisms to network connectomics. We developed a model of sensory and motor cortex consisting of several hundred spiking model-neurons. A biomimetic model (BMM) was trained using spike-timing dependent reinforcement learning to drive a simple kinematic two-joint virtual arm in a motor task requiring convergence on a single target. After learning, networks demonstrated retention of behaviorally-relevant memories by utilizing proprioceptive information to perform reach-to-target from multiple starting positions. We utilized the output of this model to drive mirroring motion of a robotic arm. In order to improve the biological realism of the motor control system, we replaced the simple virtual arm model with a realistic virtual musculoskeletal arm which was interposed between the BMM and the robot arm. The virtual musculoskeletal arm received input from the BMM signaling neural excitation for each muscle. It then fed back realistic proprioceptive information, including muscle fiber length and joint angles, which were employed in the reinforcement learning process. The limb position information was also used to control the robotic arm, leading to more realistic movements. This work explores the use of reinforcement learning in a spiking model of sensorimotor cortex and how this is affected by the bidirectional interaction with the kinematics and dynamic constraints of a realistic musculoskeletal arm model. It also paves the way towards a full closed-loop biomimetic brain-effector system that can be incorporated in a neural decoder for prosthetic control, and used for developing biomimetic learning algorithms for controlling real-time devices. Additionally, utilizing biomimetic neuronal modeling in brain-machine interfaces offers the possibility for finer control of prosthetics, and the ability to better understand the brain.


International Journal of Neural Systems | 2013

MULTIMODAL INTEGRATION OF MICRO-DOPPLER SONAR AND AUDITORY SIGNALS FOR BEHAVIOR CLASSIFICATION WITH CONVOLUTIONAL NETWORKS

Salvador Dura-Bernal; Guillaume Garreau; Julius Georgiou; Andreas G. Andreou; Susan L. Denham; Thomas Wennekers

The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the systems performance.

Collaboration


Dive into the Salvador Dura-Bernal's collaboration.

Top Co-Authors

Avatar

William W. Lytton

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

Samuel A. Neymotin

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit Majumdar

University of California

View shared research outputs
Top Co-Authors

Avatar

George L. Chadderdon

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gordon M. Shepherd

SUNY Downstate Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge