Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salvador Uribe-Carvajal is active.

Publication


Featured researches published by Salvador Uribe-Carvajal.


Journal of Biological Chemistry | 2008

Mitochondrial Oxidative Phosphorylation Is Regulated by Fructose 1,6-Bisphosphate A POSSIBLE ROLE IN CRABTREE EFFECT INDUCTION?

Rodrigo Díaz-Ruiz; Nicole Avéret; Daniela Araiza; Benoît Pinson; Salvador Uribe-Carvajal; Anne Devin; Michel Rigoulet

In numerous cell types, tumoral cells, proliferating cells, bacteria, and yeast, respiration is inhibited when high concentrations of glucose are added to the culture medium. This phenomenon has been named the “Crabtree effect.” We used yeast to investigate (i) the short term event(s) associated with the Crabtree effect and (ii) a putative role of hexose phosphates in the inhibition of respiration. Indeed, yeast divide into “Crabtree-positive,” where the Crabtree effect occurs, and “Crabtree-negative,” where it does not. In mitochondria isolated from these two categories of yeast, we found that low, physiological concentrations of glucose 6-phosphate and fructose 6-phosphate slightly (20%) stimulated the respiratory flux and that this effect was strongly antagonized by fructose 1,6-bisphosphate (F16bP). On the other hand, F16bP by itself was able to inhibit mitochondrial respiration only in mitochondria isolated from a Crabtree-positive strain. Using permeabilized spheroplasts from Crabtree-positive yeast, we have shown that the sole effect observed at physiological concentrations of hexose phosphates is an inhibition of oxidative phosphorylation by F16bP. This F16bP-mediated inhibition was also observed in isolated rat liver mitochondria, extending this process to mammalian cells. From these results and taking into account that F16bP is able to accumulate in the cell cytoplasm, we propose that F16bP regulates oxidative phosphorylation and thus participates in the establishment of the Crabtree effect.


Biochimica et Biophysica Acta | 2009

In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway.

Sergio Guerrero-Castillo; Miriam Vázquez-Acevedo; Diego González-Halphen; Salvador Uribe-Carvajal

In Yarrowia lipolytica, mitochondria contain a branched respiratory chain constituted by the classic complexes I, II, III and IV, plus an alternative external NADH dehydrogenase (NDH2e) and an alternative oxidase (AOX). The alternative enzymes are peripheral, single-subunit oxido-reductases that do not pump protons. Thus, the oxidation of NADH via NDH2e-ubiquinone-AOX would not contribute to the proton-motive force. The futile oxidation of NADH may be prevented if either NDH2e or AOX bind to the classic complexes, channelling electrons. By oxymetry, it was observed that the electrons from complex I reached both cytochrome oxidase and AOX. In contrast, NDH2e-derived electrons were specifically channelled/directed to the cytochrome complexes. In addition, the presence of respiratory supercomplexes plus the interaction of NDH2e with these complexes was evaluated using blue native PAGE, clear native PAGE, in-gel activities, immunoblotting, mass spectrometry, and N-terminal sequencing. NDH2e (but not the redirected matrix NDH2i from a mutant strain, Deltanubm) was detected in association with the cytochromic pathway; this interaction seems to be strong, as it was not disrupted by laurylmaltoside. The association of NDH2e to complex IV was also suggested when both enzymes coeluted from an ion exchange chromatography column. In Y. lipolytica mitochondria the cytochrome complexes probably associate into supercomplexes; those were assigned as follows: I-III(2), I-IV, I-III(2)-IV(4), III(2)-IV, III(2)-IV(2), IV(2) and V(2). The molecular masses of all the complexes and putative supercomplexes detected in Y. lipolytica were estimated by comparison with the bovine mitochondrial complexes. To our knowledge, this is the first evidence of supercomplex formation in Y. lipolytica mitochondria and also, the first description of a specific association between an alternative NADH dehydrogenase and the classic cytochrome pathway.


Journal of Biological Chemistry | 2010

Structure of Dimeric F1F0-ATP Synthase

Sergio Couoh-Cardel; Salvador Uribe-Carvajal; Stephan Wilkens; José J. García-Trejo

The structure of the dimeric ATP synthase from yeast mitochondria was analyzed by transmission electron microscopy and single particle image analysis. In addition to the previously reported side views of the dimer, top view and intermediate projections served to resolve the arrangement of the rotary c10 ring and the other stator subunits at the F0-F0 dimeric interface. A three-dimensional reconstruction of the complex was calculated from a data set of 9960 molecular images at a resolution of 27 Å. The structural model of the dimeric ATP synthase shows the two monomers arranged at an angle of ∼45°, consistent with our earlier analysis of the ATP synthase from bovine heart mitochondria (Minauro-Sanmiguel, F., Wilkens, S., and Garcia, J. J. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 12356–12358). In the ATP synthase dimer, the two peripheral stalks are located near the F1-F1 interface but are turned away from each other so that they are not in contact. Based on the three-dimensional reconstruction, a model of how dimeric ATP synthase assembles to form the higher order oligomeric structures that are required for mitochondrial cristae biogenesis is discussed.


Mitochondrion | 2011

Mitochondrial Unselective Channels throughout the eukaryotic domain.

Salvador Uribe-Carvajal; Luis Alberto Luévano-Martínez; Sergio Guerrero-Castillo; Alfredo Cabrera-Orefice; Norma Corona-De-La-Pena; Manuel Gutiérrez-Aguilar

Mitochondria from diverse species can undergo a massive permeability increase known as the permeability transition, a process first thought to be an artifact. It is currently accepted that in the inner mitochondrial membrane there is a Mitochondrial Unselective Channel (MUC), also known as the permeability transition pore. Regardless of the species, MUC opening leads to uncoupling of oxidative phosphorylation. In each species, MUC regulation appears to be different, probably as a result of the adaptation of each organism to its specific environment. To date, the components and the putative physiological role of MUCs are still a matter of debate. Current hypothesis suggests that proteins normally participating in diverse metabolic functions constitute MUCs. Among these proteins, the Adenine Nucleotide Translocase and the phosphate carrier have been proposed as putative MUC components in mammalian and yeast mitochondria. In this review, the characteristics of MUCs from different species and strains are discussed. The data from the literature reinforce the current notion that these channels are preserved through evolution albeit with different control factors. We emphasize the knowledge available of Mitochondrial Unselective Channels from different yeast species.


Archives of Biochemistry and Biophysics | 2010

In Saccharomyces cerevisiae, the phosphate carrier is a component of the mitochondrial unselective channel.

Manuel Gutiérrez-Aguilar; Xochitl Pérez-Martínez; Edmundo Chávez; Salvador Uribe-Carvajal

The mitochondrial permeability transition (PT) involves the opening of a mitochondrial unselective channel (MUC) resulting in membrane depolarization and increased permeability to ions. PT has been observed in many, but not all eukaryotic species. In some species, PT has been linked to cell death, although other functions, such as matrix ion detoxification or regulation of the rate of oxygen consumption have been considered. The identification of the proteins constituting MUC would help understand the biochemistry and physiology of this channel. It has been suggested that the mitochondrial phosphate carrier is a structural component of MUC and we decided to test this in yeast mitochondria. Mersalyl inhibits the phosphate carrier and it has been reported that it also triggers PT. Mersalyl induced opening of the decavanadate-sensitive Yeast Mitochondrial Unselective Channel (YMUC). In isolated yeast mitochondria from a phosphate carrier-null strain the sensitivity to both phosphate and mersalyl was lost, although the permeability transition was still evoked by ATP in a decavanadate-sensitive fashion. Polyethylene glycol (PEG)-induced mitochondrial contraction results indicated that in mitochondria lacking the phosphate carrier the YMUC is smaller: complete contraction for mitochondria from the wild type and the mutant strains was achieved with 1.45 and 1.1 kDa PEGs, respectively. Also, as expected for a smaller channel titration with 1.1 kDa PEG evidenced a higher sensitivity in mitochondria from the mutant strain. The above data suggest that the phosphate carrier is the phosphate sensor in YMUC and contributes to the structure of this channel.


Journal of Biotechnology | 2009

Trehalose-mediated thermal stabilization of glucose oxidase from Aspergillus niger

Karina J. Paz-Alfaro; Yadira G. Ruiz-Granados; Salvador Uribe-Carvajal; José G. Sampedro

Thermal inactivation and enzyme kinetics of glucose oxidase (a FAD dependent enzyme) were studied in the absence and presence of trehalose. The inactivation rate constant decreased by up to 50% at temperatures between 50 and 70 degrees C in the presence of 0.6M trehalose; as a consequence the glucose oxidase half-life increased. Intrinsic fluorescence spectra showed a maximum center of spectral mass (CSM) red shift of 6.5nm. Therefore, major structural changes seem to be related to glucose oxidase thermal inactivation. Trehalose decreased the rate constant for unfolding as monitored by CSM red shift kinetics indicating that this disaccharide favors the most compact folded state. The E(a) for unfolding was increased from 204 to 221kJ mol(-1). It is proposed that FAD dissociation is preceded by the exposition of hydrophobic regions, while the presence of trehalose was able to hinder the release of FAD. Enzyme kinetics analysis showed that trehalose does not affect V(max) but instead decreases K(m); as a result enzyme efficiency was increased. The stabilizing effect of trehalose in a cofactor-dependent enzyme has not been tested to date. In addition, glucose oxidase has an enormous commercial importance and therefore, the use of trehalose to stabilize glucose oxidase in its multiple applications seems to be promising.


Journal of Bioenergetics and Biomembranes | 2011

Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species

Sergio Guerrero-Castillo; Daniela Araiza-Olivera; Alfredo Cabrera-Orefice; Juan Espinasa-Jaramillo; Manuel Gutiérrez-Aguilar; Luis Alberto Luévano-Martínez; Armando Zepeda-Bastida; Salvador Uribe-Carvajal

Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O2 consumption by activating different exquisitely controlled uncoupling pathways. Different yeast species possess one or more uncoupling systems that work through one of two possible mechanisms: i) Proton sinks and ii) Non-pumping redox enzymes. Proton sinks are exemplified by mitochondrial unspecific channels (MUC) and by uncoupling proteins (UCP). Saccharomyces. cerevisiae and Debaryomyces hansenii express highly regulated MUCs. Also, a UCP was described in Yarrowia lipolytica which promotes uncoupled O2 consumption. Non-pumping alternative oxido-reductases may substitute for a pump, as in S. cerevisiae or may coexist with a complete set of pumps as in the branched respiratory chains from Y. lipolytica or D. hansenii. In addition, pumps may suffer intrinsic uncoupling (slipping). Promising models for study are unicellular parasites which can turn off their aerobic metabolism completely. The variety of energy dissipating systems in eukaryote species is probably designed to control ROS production in the different environments where each species lives.


Journal of Bioenergetics and Biomembranes | 2015

The Saccharomyces cerevisiae mitochondrial unselective channel behaves as a physiological uncoupling system regulated by Ca2+, Mg2+, phosphate and ATP.

Alfredo Cabrera-Orefice; Rodrigo Ibarra-García-Padilla; Rocío Maldonado-Guzmán; Sergio Guerrero-Castillo; Luis Alberto Luévano-Martínez; Victoriano Pérez-Vázquez; Manuel Gutiérrez-Aguilar; Salvador Uribe-Carvajal

It is proposed that the Saccharomyces cerevisiae the Mitochondrial Unselective Channel (ScMUC) is tightly regulated constituting a physiological uncoupling system that prevents overproduction of reactive oxygen species (ROS). Mg2+, Ca2+ or phosphate (Pi) close ScMUC, while ATP or a high rate of oxygen consumption open it. We assessed ScMUC activity by measuring in isolated mitochondria the respiratory control, transmembrane potential (ΔΨ), swelling and production of ROS. At increasing [Pi], less [Ca2+] and/or [Mg2+] were needed to close ScMUC or increase ATP synthesis. The Ca2+-mediated closure of ScMUC was prevented by high [ATP] while the Mg2+ or Pi effect was not. When Ca2+ and Mg2+ were alternatively added or chelated, ScMUC opened and closed reversibly. Different effects of Ca2+ vs Mg2+ effects were probably due to mitochondrial Mg2+ uptake. Our results suggest that ScMUC activity is dynamically controlled by both the ATP/Pi ratio and divalent cation fluctuations. It is proposed that the reversible opening/closing of ScMUC leads to physiological uncoupling and a consequent decrease in ROS production.


FEBS Journal | 2013

A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F‐actin

Daniela Araiza-Olivera; Natalia Chiquete-Félix; Mónica Rosas-Lemus; José G. Sampedro; Antonio Peña; Adela Mújica; Salvador Uribe-Carvajal

In the Saccharomyces cerevisiae glycolytic pathway, 11 enzymes catalyze the stepwise conversion of glucose to two molecules of ethanol plus two CO2 molecules. In the highly crowded cytoplasm, this pathway would be very inefficient if it were dependent on substrate/enzyme diffusion. Therefore, the existence of a multi‐enzymatic glycolytic complex has been suggested. This complex probably uses the cytoskeleton to stabilize the interaction of the various enzymes. Here, the role of filamentous actin (F‐actin) in stabilization of a putative glycolytic metabolon is reported. Experiments were performed in isolated enzyme/actin mixtures, cytoplasmic extracts and permeabilized yeast cells. Polymerization of actin was promoted using phalloidin or inhibited using cytochalasin D or latrunculin. The polymeric filamentous F‐actin, but not the monomeric globular G‐actin, stabilized both the interaction of isolated glycolytic pathway enzyme mixtures and the whole fermentation pathway, leading to higher fermentation activity. The associated complexes were resistant against inhibition as a result of viscosity (promoted by the disaccharide trehalose) or inactivation (using specific enzyme antibodies). In S. cerevisiae, a glycolytic metabolon appear to assemble in association with F‐actin. In this complex, fermentation activity is enhanced and enzymes are partially protected against inhibition by trehalose or by antibodies.


Biochimica et Biophysica Acta | 2010

Identification of the mitochondrial carrier that provides Yarrowia lipolytica with a fatty acid-induced and nucleotide-sensitive uncoupling protein-like activity

Luis Alberto Luévano-Martínez; Eva Moyano; Mario García de Lacoba; Eduardo Rial; Salvador Uribe-Carvajal

Uncoupling proteins (UCPs) are mitochondrial carriers distributed throughout the eukaryotic kingdoms. While genes coding for UCPs have been identified in plants and animals, evidences for the presence of UCPs in fungi and protozoa are only functional. Here, it is reported that in the yeast Yarrowia lipolytica there is a fatty acid-promoted and GDP-sensitive uncoupling activity indicating the presence of a UCP. The uncoupling activity is higher in the stationary phase than in the mid-log growth phase. The in silico search on the Y. lipolytica genome led to the selection of two genes with the highest homology to the UCP family, XM_503525 and XM_500457. By phylogenetic analysis, XP_503525 was predicted to be an oxaloacetate carrier while XP_500457 would be a dicarboxylate carrier. Each of these two genes was cloned and heterologously expressed in Saccharomyces cerevisiae and the resulting phenotype was analyzed. The transport activity of the two gene products confirmed the phylogenetic predictions. In addition, only mitochondria isolated from yeasts expressing XP_503525 showed bioenergetic properties characteristic of a UCP: the proton conductance was increased by linoleic acid and inhibited by GDP. It is concluded that the XM_503525 gene from Y. lipolytica encodes for an oxaloacetate carrier although, remarkably, it also displays an uncoupling activity stimulated by fatty acids and inhibited by nucleotides.

Collaboration


Dive into the Salvador Uribe-Carvajal's collaboration.

Top Co-Authors

Avatar

Natalia Chiquete-Félix

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alfredo Cabrera-Orefice

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Uribe-Alvarez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Mónica Rosas-Lemus

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Antonio Peña

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Araiza-Olivera

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adela Mújica

Instituto Politécnico Nacional

View shared research outputs
Researchain Logo
Decentralizing Knowledge