Salvatore Iovino
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Salvatore Iovino.
Cell | 2013
Cong Xu; Mohammadsharif Tabebordbar; Salvatore Iovino; Christie Ciarlo; Jingxia Liu; Alessandra Castiglioni; Emily J Price; Min Liu; Elisabeth R. Barton; C. Ronald Kahn; Amy J. Wagers; Leonard I. Zon
Ex vivo expansion of satellite cells and directed differentiation of pluripotent cells to mature skeletal muscle have proved difficult challenges for regenerative biology. Using a zebrafish embryo culture system with reporters of early and late skeletal muscle differentiation, we examined the influence of 2,400 chemicals on myogenesis and identified six that expanded muscle progenitors, including three GSK3β inhibitors, two calpain inhibitors, and one adenylyl cyclase activator, forskolin. Forskolin also enhanced proliferation of mouse satellite cells in culture and maintained their ability to engraft muscle in vivo. A combination of bFGF, forskolin, and the GSK3β inhibitor BIO induced skeletal muscle differentiation in human induced pluripotent stem cells (iPSCs) and produced engraftable myogenic progenitors that contributed to muscle repair in vivo. In summary, these studies reveal functionally conserved pathways regulating myogenesis across species and identify chemical compounds that expand mouse satellite cells and differentiate human iPSCs into engraftable muscle.
Molecular and Cellular Biology | 2008
Francesco Oriente; Luis Fernandez Diaz; Claudia Miele; Salvatore Iovino; Silvia Mori; Víctor M. Díaz; Giancarlo Troncone; Angela Cassese; Pietro Formisano; Francesco Blasi; Francesco Beguinot
ABSTRACT We have examined glucose homeostasis in mice hypomorphic for the homeotic transcription factor gene Prep1. Prep1-hypomorphic (Prep1i/i) mice exhibit an absolute reduction in circulating insulin levels but normal glucose tolerance. In addition, these mice exhibit protection from streptozotocin-induced diabetes and enhanced insulin sensitivity with improved glucose uptake and insulin-dependent glucose disposal by skeletal muscle. This muscle phenotype does not depend on reduced expression of the known Prep1 transcription partner, Pbx1. Instead, in Prep1i/i muscle, we find normal Pbx1 but reduced levels of the recently identified novel Prep1 interactor p160. Consistent with this reduction, we find a muscle-selective increase in mRNA and protein levels of PGC-1α, accompanied by enhanced expression of the GLUT4 transporter, responsible for insulin-stimulated glucose uptake in muscle. Indeed, using L6 skeletal muscle cells, we induced the opposite effects by overexpressing Prep1 or p160, but not Pbx1. In vivo skeletal muscle delivery of p160 cDNA in Prep1i/i mice also reverses the molecular phenotype. Finally, we show that Prep1 controls the stability of the p160 protein. We conclude that Prep1 controls insulin sensitivity through the p160-GLUT4 pathway.
Diabetes | 2011
Francesco Oriente; Salvatore Iovino; Serena Cabaro; Angela Cassese; Elena Longobardi; Claudia Miele; Paola Ungaro; Pietro Formisano; Francesco Blasi; Francesco Beguinot
OBJECTIVE We investigated the function of the Prep1 gene in insulin-dependent glucose homeostasis in liver. RESEARCH DESIGN AND METHODS Prep1 action on insulin glucoregulatory function has been analyzed in liver of Prep1-hypomorphic mice (Prep1i/i), which express 2–3% of Prep1 mRNA. RESULTS Based on euglycemic hyperinsulinemic clamp studies and measurement of glycogen content, livers from Prep1i/i mice feature increased sensitivity to insulin. Tyrosine phosphorylation of both insulin receptor (IR) and insulin receptor substrate (IRS)1/2 was significantly enhanced in Prep1i/i livers accompanied by a specific downregulation of the SYP and SHP1 tyrosine phosphatases. Prep1 overexpression in HepG2 liver cells upregulated SYP and SHP1 and inhibited insulin-induced IR and IRS1/2 phosphorylation and was accompanied by reduced glycogen content. Consistently, overexpression of the Prep1 partner Pbx1, but not of p160MBP, mimicked Prep1 effects on tyrosine phosphorylations, glycogen content, and on SYP and SHP1 expression. In Prep1 overexpressing cells, antisense silencing of SHP1, but not that of SYP, rescued insulin-dependent IR phosphorylation and glycogen accumulation. Both Prep1 and Pbx1 bind SHP1 promoter at a site located between nucleotides −2,113 and −1,778. This fragment features enhancer activity and induces luciferase function by 7-, 6-, and 30-fold, respectively, in response to Prep1, Pbx1, or both. CONCLUSIONS SHP1, a known silencer of insulin signal, is a transcriptional target of Prep1. In liver, transcriptional activation of SHP1 gene by Prep1 attenuates insulin signal transduction and reduces glucose storage.
Journal of Biological Chemistry | 2007
Anna Perfetti; Francesco Oriente; Salvatore Iovino; A. Teresa Alberobello; Alessia P. M. Barbagallo; Iolanda Esposito; Francesca Fiory; Raffaele Teperino; Paola Ungaro; Claudia Miele; Pietro Formisano; Francesco Beguinot
Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA)-15 is an anti-apoptotic protein whose expression is increased in several cancer cells and following experimental skin carcinogenesis. Exposure of untransfected C5N keratinocytes and transfected HEK293 cells to phorbol esters (12-O-tetradecanoylphorbol-13-acetate (TPA)) increased PED/PEA-15 cellular content and enhanced its phosphorylation at serine 116 in a time-dependent fashion. Ser-116 → Gly (PEDS116G) but not Ser-104 → Gly (PEDS104G) substitution almost completely abolished TPA regulation of PED/PEA-15 expression. TPA effect was also prevented by antisense inhibition of protein kinase C (PKC)-ζ and by the expression of a dominant-negative PKC-ζ mutant cDNA in HEK293 cells. Similar to long term TPA treatment, overexpression of wild-type PKC-ζ increased cellular content and phosphorylation of WT-PED/PEA-15 and PEDS104G but not of PEDS116G. These events were accompanied by the activation of Ca2+-calmodulin kinase (CaMK) II and prevented by the CaMK blocker, KN-93. At variance, the proteasome inhibitor lactacystin mimicked TPA action on PED/PEA-15 intracellular accumulation and reverted the effects of PKC-ζ and CaMK inhibition. Moreover, we show that PED/PEA-15 bound ubiquitin in intact cells. PED/PEA-15 ubiquitinylation was reduced by TPA and PKC-ζ overexpression and increased by KN-93 and PKC-ζ block. Furthermore, in HEK293 cells expressing PEDS116G, TPA failed to prevent ubiquitin-dependent degradation of the protein. Accordingly, in the same cells, TPA-mediated protection from apoptosis was blunted. Taken together, our results indicate that TPA increases PED/PEA-15 expression at the post-translational level by inducing phosphorylation at serine 116 and preventing ubiquitinylation and proteosomal degradation.
Cell Death & Differentiation | 2012
Salvatore Iovino; Francesco Oriente; G Botta; Serena Cabaro; Valentina Iovane; Orlando Paciello; Davide Viggiano; Giuseppe Perruolo; Pietro Formisano; Francesco Beguinot
TGF-beta1 has been shown to induce autophagy in certain cells but whether and how this action is exerted in muscle and whether this activity relates to TGF-beta1 control of muscle cell differentiation remains unknown. Here, we show that expression of the autophagy-promoting protein phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) progressively declines during L6 and C2C12 skeletal muscle cell differentiation. PED/PEA-15 underwent rapid induction upon TGF-beta1 exposure of L6 and C2C12 myoblasts, accompanied by impaired differentiation into mature myotubes. TGF-beta1 also induced autophagy in the L6 and C2C12 cells through a PP2A/FoxO1-mediated mechanism. Both the TGF-beta1 effect on differentiation and that on autophagy were blocked by specific PED/PEA-15 ShRNAs. Myoblasts stably overexpressing PED/PEA-15 did not differentiate and showed markedly enhanced autophagy. In these same cells, the autophagy inhibitor 3-methyladenine rescued TGF-beta1 effect on both autophagy and myogenesis, indicating that PED/PEA-15 mediates TGF-beta1 effects in muscle. Muscles from transgenic mice overexpressing PED/PEA-15 featured a significant number of atrophic fibers, accompanied by increased light chain 3 (LC3)II to LC3I ratio and reduced PP2A/FoxO1 phosphorylation. Interestingly, these mice showed significantly impaired locomotor activity compared with their non-transgenic littermates. TGF-beta1 causes transcriptional upregulation of the autophagy-promoting gene PED/PEA-15, which in turn is capable to induce atrophic responses in skeletal muscle in vivo.
Diabetes | 2014
Salvatore Iovino; Alison Burkart; Kristina M. Kriauciunas; Laura E.G. Warren; Katelyn J. Hughes; Michael Molla; Youn-Kyoung Lee; Mary-Elizabeth Patti; C. Ronald Kahn
Insulin resistance is central to diabetes and metabolic syndrome. To define the consequences of genetic insulin resistance distinct from those secondary to cellular differentiation or in vivo regulation, we generated induced pluripotent stem cells (iPSCs) from individuals with insulin receptor mutations and age-appropriate control subjects and studied insulin signaling and gene expression compared with the fibroblasts from which they were derived. iPSCs from patients with genetic insulin resistance exhibited altered insulin signaling, paralleling that seen in the original fibroblasts. Insulin-stimulated expression of immediate early genes and proliferation were also potently reduced in insulin resistant iPSCs. Global gene expression analysis revealed marked differences in both insulin-resistant iPSCs and corresponding fibroblasts compared with control iPSCs and fibroblasts. Patterns of gene expression in patients with genetic insulin resistance were particularly distinct in the two cell types, indicating dependence on not only receptor activity but also the cellular context of the mutant insulin receptor. Thus, iPSCs provide a novel approach to define effects of genetically determined insulin resistance. This study demonstrates that effects of insulin resistance on gene expression are modified by cellular context and differentiation state. Moreover, altered insulin receptor signaling and insulin resistance can modify proliferation and function of pluripotent stem cell populations.
Scientific Reports | 2016
Alison Burkart; Kelly Tan; Laura E.G. Warren; Salvatore Iovino; Katelyn J. Hughes; C. Ronald Kahn; Mary-Elizabeth Patti
Insulin resistance, a critical component of type 2 diabetes (T2D), precedes and predicts T2D onset. T2D is also associated with mitochondrial dysfunction. To define the cause-effect relationship between insulin resistance and mitochondrial dysfunction, we compared mitochondrial metabolism in induced pluripotent stem cells (iPSC) from 5 healthy individuals and 4 patients with genetic insulin resistance due to insulin receptor mutations. Insulin-resistant iPSC had increased mitochondrial number and decreased mitochondrial size. Mitochondrial oxidative function was impaired, with decreased citrate synthase activity and spare respiratory capacity. Simultaneously, expression of multiple glycolytic enzymes was decreased, while lactate production increased 80%. These perturbations were accompanied by an increase in ADP/ATP ratio and 3-fold increase in AMPK activity, indicating energetic stress. Insulin-resistant iPSC also showed reduced catalase activity and increased susceptibility to oxidative stress. Thus, insulin resistance can lead to mitochondrial dysfunction with reduced mitochondrial size, oxidative activity, and energy production.
Veterinary Journal | 2015
Teresa Bruna Pagano; Sławomir Wójcik; Alessandro Costagliola; Davide De Biase; Salvatore Iovino; Valentina Iovane; Valeria Russo; S. Papparella; Orlando Paciello
Sarcopenia, the age related loss of muscle mass and strength, is a multifactorial condition that occurs in a variety of species and represents a major healthcare concern for older adults in human medicine. In veterinary medicine, skeletal muscle atrophy is often observed in dogs as they reach old age, but the process is not well understood. Autophagy is a mechanism for degradation and recycling of cellular constituents and is potentially involved in sarcopenia. The aim of the present study was to evaluate the expression of three markers of autophagy, Beclin 1, LC3 and p62, in muscle wasting of geriatric dogs, to establish whether the levels of autophagy change with increasing age. Muscle biopsies from 25 geriatric dogs were examined and compared with those from five healthy young dogs. Samples from older dogs, assessed by routine histology, histoenzymatic staining and immunohistochemistry, showed evidence of muscle atrophy, sarcoplasmic vacuolisation and mitochondrial alterations. Furthermore, in 80% of the muscle samples from the older dogs, marked intracytoplasmic staining for Beclin 1 and LC3 was observed. Significantly greater expression of LC3 II and Beclin 1, but lower expression of p62, was found by Western blotting, comparing muscle samples from old vs. young dogs. The results of the study suggest that enhanced autophagy might be one of the factors underlying muscle atrophy in dogs as they age.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Salvatore Iovino; Alison Burkart; Laura E.G. Warren; Mary-Elizabeth Patti; C. Ronald Kahn
Significance In this manuscript, we have exploited induced pluripotent stem cells (iPS cells) to generate an in vitro model of human skeletal muscle insulin resistance using cells from patients affected by a monogenic form of insulin resistance (Donohue syndrome/leprechaunism). Following differentiation into skeletal muscle cells, these cells show dramatic defects in insulin signaling, glucose uptake, and glycogen accumulation, as well as insulin-regulated gene expression. To our knowledge, this represents the first use of human iPS cells differentiated into muscle to study diabetes and demonstrates that these cells can robustly reproduce insulin resistance in vitro. Induced pluripotent stem cells (iPS cells) represent a unique tool for the study of the pathophysiology of human disease, because these cells can be differentiated into multiple cell types in vitro and used to generate patient- and tissue-specific disease models. Given the critical role for skeletal muscle insulin resistance in whole-body glucose metabolism and type 2 diabetes, we have created a novel cellular model of human muscle insulin resistance by differentiating iPS cells from individuals with mutations in the insulin receptor (IR-Mut) into functional myotubes and characterizing their response to insulin in comparison with controls. Morphologically, IR-Mut cells differentiated normally, but had delayed expression of some muscle differentiation-related genes. Most importantly, whereas control iPS-derived myotubes exhibited in vitro responses similar to primary differentiated human myoblasts, IR-Mut myotubes demonstrated severe impairment in insulin signaling and insulin-stimulated 2-deoxyglucose uptake and glycogen synthesis. Transcriptional regulation was also perturbed in IR-Mut myotubes with reduced insulin-stimulated expression of metabolic and early growth response genes. Thus, iPS-derived myotubes from individuals with genetically determined insulin resistance demonstrate many of the defects observed in vivo in insulin-resistant skeletal muscle and provide a new model to analyze the molecular impact of muscle insulin resistance.
Diabetes | 2017
Francesco Oriente; Salvatore Iovino; Serena Cabaro; Angela Cassese; Elena Longobardi; Claudia Miele; Paola Ungaro; Pietro Formisano; Francesco Blasi; Francesco Beguinot
On the basis of the recommendation of the American Diabetes Association’s Panel on Ethical Scientific Programs (ESP), the American Diabetes Association, the publisher of Diabetes, is issuing this expression of concern to alert readers to questions about the reliability of the data in the above-cited article. After readers of the journal contacted Diabetes about potentially duplicated images in the article, the ESP contacted the corresponding author to request explanations for the reported anomalies. Replying on behalf of all authors, the corresponding author responded that the images were similar but unique, and he provided source images and detailed visual analyses to support the originality …
Collaboration
Dive into the Salvatore Iovino's collaboration.
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputs