Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salvatore Nesci is active.

Publication


Featured researches published by Salvatore Nesci.


Toxicology in Vitro | 2013

Toxicity of organotin compounds: Shared and unshared biochemical targets and mechanisms in animal cells

Alessandra Pagliarani; Salvatore Nesci; Vittoria Ventrella

Most biochemical effects of organotin compounds leading to toxicity are astonishingly similar in different animal species. In vitro tests, designed to explore organotin action modes at cell level by minimizing interfering factors, point out akin responses to these man-made environmental pollutants from prokaryotes to mammals. On the other hand, a broad susceptibility range to organotin toxicants of animal cells and variegated action mechanisms of these compounds have been reported both in vitro and in vivo studies. Endocrine and lipid homeostasis perturbations span from mollusks to mammals, in which organotins mainly favor fat accumulation. Lipid changes were also found in Bacteria. Organotin are immunotoxic both in invertebrates and humans. Mitochondria and membrane functions seem to be a preferred target of these lipophilic pollutants. The inhibition of key membrane-bound enzyme complexes such as Na,K-and F0F1-ATPases, accompanied by perturbation of hydromineral balance, membrane potential and bioenergetics, has been widely reported. Highly conserved mechanisms could be involved in organotin binding to nuclear receptors, membrane components and intracellular proteins as well as in promoting DNA damage, all widely shared action modes of these toxicants. Accordingly, the different responsiveness/refractoriness to organotins, here overviewed, may mirror the biochemical-physiological selectivity of biomembranes, signalling pathways and intracellular protein components.


Toxicology in Vitro | 2008

Tributyltin (TBT) inhibition of oligomycin-sensitive Mg-ATPase activity in mussel mitochondria

Alessandra Pagliarani; Patrizia Bandiera; Vittoria Ventrella; Fabiana Trombetti; Maurizio Pirini; Salvatore Nesci; Anna Rosa Borgatti

Tributyltin (TBT), one of the most toxic lipophilic aquatic pollutants, can be efficiently incorporated from sea water and sediments by filter-feeding molluscs. As far as we are aware TBT effects on the mitochondrial oligomycin-sensitive Mg-ATPase, the enzymatic core of energy production and a known target of TBT toxicity in mammals, have not been yet investigated in molluscs; thus the hydrolytic capability of the mitochondrial complex in the presence of micromolar concentrations of TBT was assayed in the mussel Mytilus galloprovincialis. Gill and mantle ATPase activities were progressively depressed by increasing TBT doses up to a maximal inhibition (82% in the gills and 74% in the mantle) at 0.62 microM TBT. Non-cooperative inhibition kinetics (n(H) approximately -1) and a non-competitive mechanism with respect to ATP substrate were pointed out. The mitochondrial Mg-ATPase susceptivity to TBT in the marine mussel was consistent with the formation of a TBT-Mg-ATPase complex, apparently more stable in the gills than in the mantle. The complex shape of the dose-response curve and the partial release of Mg-ATPase inhibition within the 0.6-34.4 microM TBT range suggest multiple interactions of TBT with the enzyme complex putatively related to its molecular mechanism of toxicity.


Mitochondrion | 2013

Modifiers of the oligomycin sensitivity of the mitochondrial F1F0-ATPase

Alessandra Pagliarani; Salvatore Nesci; Vittoria Ventrella

The mitochondrial F₁F₀ complex is highly sensitive to macrolide antibiotics and especially targeted by oligomycins. These compounds bind to the membrane-embedded sector F₀ and block proton conductance through the inner membrane, thus inhibiting both ATP synthesis and hydrolysis. Oligomycin sensitivity is universally recognized as a clue of the functional integrity and matching between F₀ and F₁. Since oligomycin binding implies multiple interactions with amino acid residues of F₀, amino acid substitutions often affect the inhibition efficiency. Moreover, variegated factors spanning from membrane properties to xenobiotic incorporation and detachment of the oligomycin-insensitive F₁ sector can alter the oligomycin sensitivity of the enzyme complex. The overview on the multiple factors involved strengthens the link between altered oligomycin sensitivity and physiopathological conditions associated with defective ATPases. An improved understanding of the mechanisms involved may also favor drug design to counteract oxidative damage, which stems from most mitochondrial dysfunctions.


Environmental Toxicology and Chemistry | 2012

Structural and functional changes in gill mitochondrial membranes from the Mediterranean mussel Mytilus galloprovincialis exposed to tri‐n‐butyltin

Rosamaria Fiorini; Alessandra Pagliarani; Salvatore Nesci; Maurizio Pirini; Elisabetta Tucci; Vittoria Ventrella

The use of tributyltin (TBT) as a biocide in antifouling paints leads to a ruinous input of this contaminant in the aquatic environment. Human exposure to TBT mainly occurs through ingestion of contaminated seafood such as filter-feeding mollusks. Tributyltin is known to act as a membrane-active toxicant on several targets, but especially on the mitochondria, and by several mechanisms. The effects of tributyltin on fatty acid composition, on Mg-adenosine triphosphatase (ATPase) activities, and on the membrane physical state were investigated in gill mitochondrial membranes from cultivated mussels Mytilus galloprovincialis exposed to 0.5 µg/L and 1.0 µg/L TBT and unexposed for 120 h. The higher TBT exposure dose induced a decrease in the total and n-3 polyunsaturated fatty acids (PUFAs), especially 22:6 n-3, and an activation of the oligomycin-sensitive Mg-ATPase. Both TBT concentrations decreased mitochondrial membrane polarity detected by Laurdan steady-state fluorescence spectroscopy. These findings may help cast light on the multiple modes of action of this toxicant.


Journal of Bioenergetics and Biomembranes | 2013

Mussel and mammalian ATP synthase share the same bioenergetic cost of ATP

Salvatore Nesci; Vittoria Ventrella; Fabiana Trombetti; Maurizio Pirini; Alessandra Pagliarani

The molecular mechanism by which the membrane-embedded FO sector of the mitochondrial ATP synthase translocates protons, thus dissipating the transmembrane protonmotive force and leading to ATP synthesis, involves the neutralization of the carboxylate residues of the c-ring. Carboxylates are thought to constitute the binding sites for ion translocation. In order to cast light on this mechanism, we exploited N,N’-dicyclohexylcarbodiimide, which covalently binds to FOc-ring carboxylates, and ionophores which selectively modulate the transmembrane electric (Δφ) and chemical (ΔpH) gradients such as valinomycin, nigericin and dinitrophenol. ATP hydrolysis was evaluated in mitochondrial preparations and/or inside-out submitochondrial particles from mussel and mammalian tissues under different experimental conditions. The experiments pointed out striking similarities between mussel and mammalian mitochondrial ATP synthase. Our results support the hypothesis that the ATP synthase of Mytilus galloprovincialis induces intersubunit torque generation and translocates H+ by coordinating the hydronium ion (H3O+) in the ion binding site of FO. Our results are consistent with the hypothesis that in mussel mitochondria the main component of the electrochemical gradient driving proton flux and ATP synthesis is Δφ. Therefore, mussel FO probably contains a small c-ring, which implies a low bioenergetic cost of making ATP as in mammals. These features which make mussel mitochondria as efficient in ATP production as mammalian ones may be especially advantageous in facultative aerobic species which intermittently exploit mitochondrial respiration to generate ATP.


Journal of Agricultural and Food Chemistry | 2013

Dietary enhancement of selected fatty acid biosynthesis in the digestive gland of Mytilus galloprovincialis Lmk.

Ventrella; Alessandra Pagliarani; Salvatore Nesci; Fabiana Trombetti; Maurizio Pirini

The fatty acid composition of the digestive gland from the mussel Mytilus galloprovincialis subjected to three different dietary regimens for 30 days was analyzed. Samples were collected at the beginning and end of the trial to obtain a comprehensive picture of fatty acid dynamics. Group A was unfed; group B received a diet consisting of 100% Thalassiosira weissflogii and, thus, similar to natural food; and group C received a diet consisting of 100% wheat germ conferring a 18:2ω-6 abundance. Results indicate that fatty acid composition of lipid and phospholipid classes was affected by dietary treatments. However, adult mussel homeostatic skills minimized effects, and thus, only wheat germ diet deeply modified the fatty acid composition. Furthermore, in group C, the occurrence of the non-methylene-interrupted trienoic fatty acids was indicative of de novo fatty acid synthesis presumably because of active fatty acid elongation and Δ5 desaturation system, also supported by the general ω-3 polyunsaturated fatty acid decrease.


Biochimie | 2014

The mitochondrial F1FO-ATPase desensitization to oligomycin by tributyltin is due to thiol oxidation.

Salvatore Nesci; Vittoria Ventrella; Fabiana Trombetti; Maurizio Pirini; Alessandra Pagliarani

The antibiotic oligomycin is known to inhibit mitochondrial F-type ATP synthases. The antibiotic inhibits both ATP synthesis and hydrolysis by blocking the H(+) translocation through FO which is coupled to the catalytic activity of F1. The amphiphilic organotin tri-n-butyltin (TBT), a known mitochondrial poison, can penetrate into biological membranes and covalently bind to electron-donor atoms of biomolecules such as sulfur. This study aims at exploring the mechanism(s) involved in the enzyme desensitization to oligomycin which occurs at concentrations >1 μM TBT. This poorly known effect of TBT, which only appeared at temperatures above the break in the Arrhenius plot of the enzyme activity, was found to be accompanied by the oxidation of isolated thiol groups of the mitochondrial complex. The oligomycin sensitivity was restored by the reducing agents glutathione and dithioerythritol and not influenced by antioxidants. The whole of data is consistent with the hypothesis that thiol oxidation is caused by TBT covalent binding to cysteine residues in a low-affinity site on FO and not by other possible oxidative events. According to this putative model, the onset of tin-sulfur bonds would trigger conformational changes and weaken the oligomycin interaction with FO.


Biochimica et Biophysica Acta | 2014

Thiol oxidation is crucial in the desensitization of the mitochondrial F1FO-ATPase to oligomycin and other macrolide antibiotics

Salvatore Nesci; Vittoria Ventrella; Fabiana Trombetti; Maurizio Pirini; Alessandra Pagliarani

BACKGROUND The macrolide antibiotics oligomycin, venturicidin and bafilomycin, sharing the polyketide ring and differing in the deoxysugar moiety, are known to block the transmembrane ion channel of ion-pumping ATPases; oligomycins are selective inhibitors of mitochondrial ATP synthases. METHODS The inhibition mechanism of macrolides was explored on swine heart mitochondrial F1FO-ATPase by kinetic analyses. The amphiphilic membrane toxicant tributyltin (TBT) and the thiol reducing agent dithioerythritol (DTE) were used to elucidate the nature of the macrolide-enzyme interaction. RESULTS When individually tested, the macrolide antibiotics acted as uncompetitive inhibitors of the ATPase activity. Binary mixtures of macrolide inhibitors I1 and I2 pointed out a non-exclusive mechanism, indicating that each macrolide binds to its binding site on the enzyme. When co-present, the two macrolides acted synergistically in the formed quaternary complex (ESI1I2), thus mutually strengthening the enzyme inhibition. The enzyme inhibition by macrolides displaying a shared mechanism was dose-dependently reduced by TBT≥1μM. The TBT-driven enzyme desensitization was reversed by DTE. CONCLUSIONS The macrolides tested share uncompetitive inhibition mechanism by binding to a specific site in a common macrolide-binding region of FO. The oxidation of highly conserved thiols in the ATP synthase c-ring of FO weakens the interaction between the enzyme and the macrolides. The native macrolide-inhibited enzyme conformation can be restored by reducing crucial thiols oxidized by TBT. GENERAL SIGNIFICANCE The findings, by elucidating the macrolide inhibitory mechanism on FO, indirectly cast light on the F1FO torque generation involving crucial amino acid residues and may address drug design and antimicrobial therapy.


The Journal of Membrane Biology | 2016

The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives.

Salvatore Nesci; Fabiana Trombetti; Vittoria Ventrella; Alessandra Pagliarani

The F1FO-ATP synthase is the only enzyme in nature endowed with bi-functional catalytic mechanism of synthesis and hydrolysis of ATP. The enzyme functions, not only confined to energy transduction, are tied to three intrinsic features of the annular arrangement of c subunits which constitutes the so-called c-ring, the core of the membrane-embedded FO domain: (i) the c-ring constitution is linked to the number of ions (H+ or Na+) channeled across the membrane during the dissipation of the transmembrane electrochemical gradient, which in turn determines the species-specific bioenergetic cost of ATP, the “molecular currency unit” of energy transfer in all living beings; (ii) the c-ring is increasingly involved in the mitochondrial permeability transition, an event linked to cell death and to most mitochondrial dysfunctions; (iii) the c subunit species-specific amino acid sequence and susceptibility to post-translational modifications can address antibacterial drug design according to the model of enzyme inhibitors which target the c subunits. Therefore, the simple c-ring structure not only allows the F1FO-ATP synthase to perform the two opposite tasks of molecular machine of cell life and death, but it also amplifies the enzyme’s potential role as a drug target.


The Journal of Membrane Biology | 2015

Opposite Rotation Directions in the Synthesis and Hydrolysis of ATP by the ATP Synthase: Hints from a Subunit Asymmetry

Salvatore Nesci; Fabiana Trombetti; Vittoria Ventrella; Alessandra Pagliarani

The ATP synthase can be imagined as a reversible H+-translocating channel embedded in the membrane, FO portion, coupled to a protruding catalytic portion, F1. Under physiological conditions the F1FO complex synthesizes ATP by exploiting the transmembrane electrochemical gradient of protons and their downhill movement. Alternatively, under other patho-physiological conditions it exploits ATP hydrolysis to energize the membrane by uphill pumping protons. The reversibility of the mechanism is guaranteed by the structural coupling between the hydrophilic F1 and the hydrophobic FO. Which of the two opposite processes wins in the energy-transducing membrane complex depends on the thermodynamic balance between the protonmotive force (Δp) and the phosphorylation potential of ATP (ΔGP). Accordingly, while Δp prevalence drives ATP synthesis by translocating protons from the membrane P-side to the N-side and generating anticlockwise torque rotation (viewed from the matrix), ΔGP drives ATP hydrolysis by chemomechanical coupling of FO to F1 with clockwise torque. The direction of rotation is the same in all the ATP synthases, due to the conserved steric arrangement of the chiral a subunit of FO. The ability of this coupled bi-functional complex to produce opposite rotations in ATP synthesis and hydrolysis is explained on the basis of the a subunit asymmetry.

Collaboration


Dive into the Salvatore Nesci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosamaria Fiorini

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge