Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salvatore Papasergi is active.

Publication


Featured researches published by Salvatore Papasergi.


Nature Immunology | 2009

Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells

Giuseppe Mancuso; Maria Gambuzza; Angelina Midiri; Carmelo Biondo; Salvatore Papasergi; Shizuo Akira; Giuseppe Teti; Concetta Beninati

Little is known of how and where bacterial recognition triggers the induction of type I interferon. Whether the type of recognition receptor used in these responses is determined by the subcellular location of bacteria is not understood. Here we show that phagosomal bacteria such as group B streptococcus, but not cytosolic bacteria, potently induced interferon in conventional dendritic cells by a mechanism that required Toll-like receptor 7, the adaptor MyD88 and the transcription factor IRF1, all of which localized together with bacterial products in degradative vacuoles bearing lysosomal markers. Thus, this cell type–specific recognition pathway links lysosomal recognition of bacterial RNA with a robust, host-protective interferon response.


Journal of Immunology | 2012

Activation of the NLRP3 Inflammasome by Group B Streptococci

Alessandro Costa; Rahul Gupta; Giacomo Signorino; Antonio Malara; Francesco Cardile; Carmelo Biondo; Angelina Midiri; Roberta Galbo; Patrick Trieu-Cuot; Salvatore Papasergi; Giuseppe Teti; Philipp Henneke; Giuseppe Mancuso; Douglas T. Golenbock; Concetta Beninati

Group B Streptococcus (GBS) is a frequent agent of life-threatening sepsis and meningitis in neonates and adults with predisposing conditions. We tested the hypothesis that activation of the inflammasome, an inflammatory signaling complex, is involved in host defenses against this pathogen. We show in this study that murine bone marrow-derived conventional dendritic cells responded to GBS by secreting IL-1β and IL-18. IL-1β release required both pro–IL-1β transcription and caspase-1–dependent proteolytic cleavage of intracellular pro–IL-1β. Dendritic cells lacking the TLR adaptor MyD88, but not those lacking TLR2, were unable to produce pro–IL-1β mRNA in response to GBS. Pro–IL-1β cleavage and secretion of the mature IL-1β form depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) sensor and the apoptosis-associated speck-like protein containing a caspase activation and recruitment domain adaptor. Moreover, activation of the NLRP3 inflammasome required GBS expression of β-hemolysin, an important virulence factor. We further found that mice lacking NLRP3, apoptosis-associated speck-like protein, or caspase-1 were considerably more susceptible to infection than wild-type mice. Our data link the production of a major virulence factor by GBS with the activation of a highly effective anti-GBS response triggered by the NLRP3 inflammasome.


Journal of Biological Chemistry | 2010

Plasminogen- and Fibronectin-binding Protein B Is Involved in the Adherence of Streptococcus pneumoniae to Human Epithelial Cells

Salvatore Papasergi; Manuela Garibaldi; Giovanna Tuscano; Giacomo Signorino; Susanna Ricci; Samuele Peppoloni; Ida Pernice; Carla Lo Passo; Giuseppe Teti; Franco Felici; Concetta Beninati

Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. The ability of this bacterium to adhere to epithelial cells is considered as an essential early step in colonization and infection. By screening a whole genome phage display library with sera from infected patients, we previously identified three antigenic fragments matching open reading frame spr0075 of the strain R6 genome. This locus encodes for an ∼120-kDa protein, herein referred to as plasminogen- and fibronectin-binding protein B (PfbB), which displays an LPXTG cell wall anchoring motif and six repetitive domains. In this study, by using isogenic pfbB-deleted mutants of the encapsulated D39 and of the unencapsulated DP1004 type 2 pneumococcal strains, we show that PfbB is involved in S. pneumoniae adherence to various epithelial respiratory tract cell lines. Our data suggest that PfbB directly mediates bacterial adhesion, because fluorescent beads coated with the recombinant PfbB sp17 fragment (encompassing one of the six repetitive domains and the C-terminal region) efficiently bound to epithelial cells. Mutants lacking PfbB bound to fibronectin and plasminogen considerably less efficiently than wild type bacteria, whereas sp17-coated beads specifically bound to both of these substrates. Taken together, our data suggest that, by directly interacting with fibronectin, PfbB significantly increases the ability of S. pneumoniae to adhere to human epithelial cells.


Infection and Immunity | 2005

Characterization of two novel cryptococcal mannoproteins recognized by immune sera.

Carmelo Biondo; Luciano Messina; Mauro Bombaci; Giuseppe Mancuso; Angelina Midiri; Concetta Beninati; Valentina Valeria Cusumano; Elisabetta Gerace; Salvatore Papasergi; Giuseppe Teti

ABSTRACT Host defenses against the encapsulated yeast Cryptococcus neoformans involve both humoral and cell-mediated immunity. Mannoproteins (MPs) are a heterogeneous class of immunodominant glycoproteins which have been only incompletely characterized. In this study, we report on the molecular features of two novel MPs that are recognized by serum antibodies during cryptococcosis. After fractionation of extracellular cryptococcal products, MPs reacted more strongly than other components with sera from C. neoformans-infected AIDS patients. Further fractionation and Western blot analysis of MPs evidenced the presence of highly reactive bands with molecular masses of 250, 125, 115, and 84 kDa. The 115- and 84-kDa bands contained significant amounts of N-linked oligosaccharides, as shown by decreased molecular mass after peptide-N-glycosidase F treatment. N-terminal amino acid sequences of the two bands were used to search C. neoformans nucleotide databases. Homologous genomic sequences were used to synthesize DNA probes and isolate cDNA clones containing the full-length genes, which were designated MP84 and MP115. Both genes showed the presence of a serine/threonine-rich region, a potential site for heavy glycosylation. MP84 and MP115 showed homology with, respectively, polysaccharide deacetylases and carboxylesterases from other organisms. Recombinant, deglycosylated proteins expressed in Escherichia coli still reacted with sera from patients, albeit more weakly than natural MPs, indicating that at least some of the reactive epitopes were retained in the recombinant forms. In conclusion, we identified two novel MPs that are important targets of antibody responses during cryptococcosis. These data may be useful to devise alternative immunity-based strategies to control the disease.


Vaccine | 2010

Immunoprotective activities of a Streptococcus suis pilus subunit in murine models of infection

Manuela Garibaldi; Manuel J. Rodríguez-Ortega; Francesca Mandanici; Angela Cardaci; Angelina Midiri; Salvatore Papasergi; Orazio Gambadoro; Giuseppe Teti; Concetta Beninati

Pili of gram-positive bacteria are key virulence factors and their subunits are considered excellent vaccine candidates. Streptococcus suis is an emerging zoonotic agent that can cause epidemics of life-threatening infections in humans, but the functional role or immunoprotective potential of its pilus components have not been studied yet. Using a selective proteomics approach, we have identified a surface protein of serotype 2 S. suis showing features of an ancillary pilus subunit, as evidenced by bioinformatics analysis, immunoblot and immunoelectron microscopy. Immunization with recombinant fragments of this protein, designated herein as PAPI-2b, markedly protected mice from systemic S. suis infection.


Journal of Proteomics | 2010

A surface protein of Streptococcus suis serotype 2 identified by proteomics protects mice against infection

Francesca Mandanici; Lidia Gómez-Gascón; Manuela Garibaldi; Alfonso Olaya-Abril; Inmaculada Luque; Carmen Tarradas; Giuseppe Mancuso; Salvatore Papasergi; J. Antonio Bárcena; Giuseppe Teti; Concetta Beninati; Manuel J. Rodríguez-Ortega

Streptococcus suis serotype 2 is a major Gram-positive swine pathogen, causing also zoonoses. We describe here the immunoprotective activity in an in vivo animal model of a serotype-2 cell wall protein, designated Sat, which was identified by a previously validated proteomics approach consisting of the protease digestion of live bacteria and the selective recovery of exposed domains, followed by LC/MS/MS analysis. Increased survival rate (80%) and decreased bacterial burden were observed in mice immunized with a recombinant Sat fragment, suggesting that this protein is a potential vaccine candidate against serotype-2 infection.


Journal of Immunology | 2007

Peptide Mimics of the Group B Meningococcal Capsule Induce Bactericidal and Protective Antibodies after Immunization

Carla Lo Passo; Angela Romeo; Ida Pernice; Paolo Donato; Angelina Midiri; Giuseppe Mancuso; Milena Arigò; Carmelo Biondo; Roberta Galbo; Salvatore Papasergi; Franco Felici; Giuseppe Teti; Concetta Beninati

Neisseria meningitidis serogroup B (MenB) is a leading cause of sepsis and meningitis in children. No vaccine is available for the prevention of these infections because the group B capsular polysaccharide (CP) (MenB CP) is unable to stimulate an immune response, due to its similarity with human polysialic acid. Because the MenB CP bears both human cross-reactive and non-cross-reactive determinants, we developed immunogenic peptide mimics of the latter epitopes. Peptides were selected from phage display libraries for their ability to bind to a protective anti-MenB CP mAb. One of these peptides (designated 9M) induced marked elevations in serum bactericidal activity, but not polysialic acid cross-reacting Abs, after gene priming followed by carrier-conjugate boosting. Moreover, the occurrence of bacteremia was prevented in infant rats by administration of immune sera before MenB challenge. 9M is a promising lead candidate for the development of an effective and affordable anti-MenB vaccine.


Journal of Biological Chemistry | 2014

FbsC, a novel fibrinogen-binding protein, promotes Streptococcus agalactiae-host cell interactions

Marco Buscetta; Salvatore Papasergi; Arnaud Firon; Carmelo Biondo; Giuseppe Mancuso; Angelina Midiri; Letizia Romeo; Giuseppe Teti; Pietro Speziale; Patrick Trieu-Cuot; Concetta Beninati

Background: Streptococcus agalactiae (GBS) must bind to fibrinogen to cross host barriers and cause disease. Results: A novel fibrinogen-binding protein of GBS, named FbsC, was shown to be required for efficient invasion of human cells. Conclusion: GBS utilizes FbsC to adhere to fibrinogen on human cells and invade them. Significance: Blocking the function of FbsC may be useful to prevent or treat infections by GBS. Streptococcus agalactiae (group B Streptococcus or GBS) is a common cause of invasive infections in newborn infants and adults. The ability of GBS to bind human fibrinogen is of crucial importance in promoting colonization and invasion of host barriers. We characterized here a novel fibrinogen-binding protein of GBS, designated FbsC (Gbs0791), which is encoded by the prototype GBS strain NEM316. FbsC, which bears two bacterial immunoglobulin-like tandem repeat domains and a C-terminal cell wall-anchoring motif (LPXTG), was found to be covalently linked to the cell wall by the housekeeping sortase A. Studies using recombinant FbsC indicated that it binds fibrinogen in a dose-dependent and saturable manner, and with moderate affinity. Expression of FbsC was detected in all clinical GBS isolates, except those belonging to the hypervirulent lineage ST17. Deletion of fbsC decreases NEM316 abilities to adhere to and invade human epithelial and endothelial cells, and to form biofilm in vitro. Notably, bacterial adhesion to fibrinogen and fibrinogen binding to bacterial cells were abolished following fbsC deletion in NEM316. Moreover, the virulence of the fbsC deletion mutant and its ability to colonize the brain were impaired in murine models of infection. Finally, immunization with recombinant FbsC significantly protected mice from lethal GBS challenge. In conclusion, FbsC is a novel fibrinogen-binding protein expressed by most GBS isolates that functions as a virulence factor by promoting invasion of epithelial and endothelial barriers. In addition, the protein has significant immunoprotective activity and may be a useful component of an anti-GBS vaccine.


European Journal of Immunology | 2012

Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis

Carmelo Biondo; Antonio Malara; Alessandro Costa; Giacomo Signorino; Francesco Cardile; Angelina Midiri; Roberta Galbo; Salvatore Papasergi; Maria Domina; Michela Pugliese; Giuseppe Teti; Giuseppe Mancuso; Concetta Beninati

Despite convincing evidence for involvement of members of the Toll‐like receptor (TLR) family in fungal recognition, little is known of the functional role of individual TLRs in antifungal defenses. We found here that TLR7 was partially required for the induction of IL‐12 (IL‐12p70) by Candida albicans or Saccharomyces cerevisiae. Moreover, the IL‐12p70 response was completely abrogated in cells from 3d mice, which are unable to mob‐ilize TLRs to endosomal compartments, as well as in cells from mice lacking either the TLR adaptor MyD88 or the IRF1 transcription factor. Notably, purified fungal RNA recapitulated IL‐12p70 induction by whole yeast. Although RNA could also induce moderate TLR7‐dependent IL‐23 and tumor necrosis factor‐alpha (TNF‐α) secretion, TLR7 and other endosomal TLRs were redundant for IL‐23 or TNF‐α induction by whole fungi. Importantly, mice lacking TLR7 or IRF1 were hypersusceptible to systemic C. albicans infection. Our data suggest that IRF1 is downstream of a novel, nonredundant fungal recognition pathway that has RNA as a major target and requires phagosomal recruitment of intracellular TLRs. This pathway differs from those involved in IL‐23 or TNF‐α responses, which we show here to be independent from translocation of intracellular TLRs, phagocytosis, or phagosomal acidification.


PLOS ONE | 2011

The GBS PI-2a Pilus Is Required for Virulence in Mice Neonates

Salvatore Papasergi; Sara Brega; Michel-Yves Mistou; Arnaud Firon; Virginie Oxaran; Ron Saar Dover; Giuseppe Teti; Yechiel Shai; Patrick Trieu-Cuot; Shaynoor Dramsi

Background Streptococcus agalactiae (Group B Streptococcus) is a leading cause of sepsis and meningitis in newborns. Most bacterial pathogens, including gram-positive bacteria, have long filamentous structures known as pili extending from their surface. Although pili are described as adhesive organelles, they have been also implicated in many other functions including thwarting the host immune responses. We previously characterized the pilus-encoding operon PI-2a (gbs1479-1474) in strain NEM316. This pilus is composed of three structural subunit proteins: PilA (Gbs1478), PilB (Gbs1477), and PilC (Gbs1474), and its assembly involves two class C sortases (SrtC3 and SrtC4). PilB, the bona fide pilin, is the major component whereas PilA, the pilus associated adhesin, and PilC the pilus anchor are both accessory proteins incorporated into the pilus backbone. Methodology/Principal Findings In this study, the role of the major pilin subunit PilB was tested in systemic virulence using 6-weeks old and newborn mice. Notably, the non-piliated ΔpilB mutant was less virulent than its wild-type counterpart in the newborn mice model. Next, we investigated the possible role(s) of PilB in resistance to innate immune host defenses, i.e. resistance to macrophage killing and to antimicrobial peptides. Phagocytosis and survival of wild-type NEM316 and its isogenic ΔpilB mutant in immortalized RAW 264.7 murine macrophages were not significantly different whereas the isogenic ΔsodA mutant was more susceptible to killing. These results were confirmed using primary peritoneal macrophages. We also tested the activities of five cationic antimicrobial peptides (AMP-1D, LL-37, colistin, polymyxin B, and mCRAMP) and found no significant difference between WT and ΔpilB strains whereas the isogenic dltA mutant showed increased sensitivity. Conclusions/Significance These results question the previously described role of PilB pilus in resistance to the host immune defenses. Interestingly, PilB was found to be important for virulence in the neonatal context.

Collaboration


Dive into the Salvatore Papasergi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge