Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salvatore Pascale is active.

Publication


Featured researches published by Salvatore Pascale.


Reviews of Geophysics | 2014

Mathematical and physical ideas for climate science

Valerio Lucarini; Richard Blender; Corentin Herbert; Francesco Ragone; Salvatore Pascale; Jeroen Wouters

The climate is a forced and dissipative nonlinear system featuring nontrivial dynamics on a vast range of spatial and temporal scales. The understanding of the climates structural and multiscale properties is crucial for the provision of a unifying picture of its dynamics and for the implementation of accurate and efficient numerical models. We present some recent developments at the intersection between climate science, mathematics, and physics, which may prove fruitful in the direction of constructing a more comprehensive account of climate dynamics. We describe the Nambu formulation of fluid dynamics and the potential of such a theory for constructing sophisticated numerical models of geophysical fluids. Then, we focus on the statistical mechanics of quasi-equilibrium flows in a rotating environment, which seems crucial for constructing a robust theory of geophysical turbulence. We then discuss ideas and methods suited for approaching directly the nonequilibrium nature of the climate system. First, we describe some recent findings on the thermodynamics of climate, characterize its energy and entropy budgets, and discuss related methods for intercomparing climate models and for studying tipping points. These ideas can also create a common ground between geophysics and astrophysics by suggesting general tools for studying exoplanetary atmospheres. We conclude by focusing on nonequilibrium statistical mechanics, which allows for a unified framing of problems as different as the climate response to forcings, the effect of altering the boundary conditions or the coupling between geophysical flows, and the derivation of parametrizations for numerical models.


Earth System Dynamics Discussions | 2013

Hydrological cycle over South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments

Shabeh ul Hasson; Valerio Lucarini; Salvatore Pascale

Abstract. We investigate how the climate models contributing to the PCMDI/CMIP3 dataset describe the hydrological cycle over four major South and Southeast Asian river basins (Indus, Ganges, Brahmaputra and Mekong) for the 20th, 21st (13 models) and 22nd (10 models) centuries. For the 20th century, some models do not seem to conserve water at the river basin scale up to a good degree of approximation. The simulated precipitation minus evaporation (P − E), total runoff (R) and precipitation (P) quantities are neither consistent with the observations nor among the models themselves. Most of the models underestimate P − E for all four river basins, which is mainly associated with the underestimation of precipitation. This is in agreement with the recent results on the biases of the representation of monsoonal dynamics by GCMs. Overall, a modest inter-model agreement is found only for the evaporation and inter-annual variability of P − E. For the 21st and 22nd centuries, models agree on the negative (positive) changes of P − E for the Indus basin (Ganges, Brahmaputra and Mekong basins). Most of the models foresee an increase in the inter-annual variability of P − E for the Ganges and Mekong basins, thus suggesting an increase in large low-frequency dry/wet events. Instead, no considerable future change in the inter-annual variability of P − E is found for the Indus and Brahmaputra basins.


Earth System Dynamics Discussions | 2013

Seasonality of the hydrological cycle in major South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments

Shabeh ul Hasson; Valerio Lucarini; Salvatore Pascale; Juergen Böhner

Abstract. In this study, we investigate how PCMDI/CMIP3 general circulation models (GCMs) represent the seasonal properties of the hydrological cycle in four major South and Southeast Asian river basins (Indus, Ganges, Brahmaputra and Mekong). First, we examine the skill of the GCMs by analysing their performance in simulating the 20th century climate (1961–2000 period) using historical forcing (20c3m experiment), and then we analyse the projected changes for the corresponding 21st and 22nd century climates under the SRESA1B scenario. The CMIP3 GCMs show a varying degree of skill in simulating the basic characteristics of the monsoonal precipitation regimes of the Ganges, Brahmaputra and Mekong basins, while the representation of the hydrological cycle over the Indus Basin is poor in most cases, with a few GCMs not capturing the monsoonal signal at all. While the model outputs feature a remarkable spread for the monsoonal precipitation, a satisfactory representation of the western mid-latitude precipitation regime is instead observed. Similarly, most of the models exhibit a satisfactory agreement for the basin-integrated runoff in winter and spring, while their spread is large for the runoff during the monsoon season. For the future climate scenarios, most models foresee a decrease in the winter P − E over all four basins, while agreement is found on the decrease of the spring P − E over the Indus and Ganges basins only. Such decreases in P − E are mainly due to the decrease in precipitation associated with the western mid-latitude disturbances. Consequently, for the Indus and Ganges basins, the runoff drops during the spring season while it rises during the winter season. Such changes indicate a shift from rather glacial and nival to more pluvial runoff regimes, particularly for the Indus Basin. Furthermore, the rise in the projected runoff, along with the increase in precipitation during summer and autumn, indicates an intensification of the summer monsoon regime for all study basins.


Astronomische Nachrichten | 2013

Habitability and multistability in earth-like planets

Valerio Lucarini; Salvatore Pascale; Robert Boschi; Edilbert Kirk; Nicolas Iro

We explore the potential multistability of the climate for a planet around the habitable zone. We focus on conditions reminiscent to those of the Earth system, but our investigation aims at presenting a general methodology for dealing with exoplanets. We provide a thorough analysis of the non-equilibrium thermodynamical properties of the climate system and explore, using a a flexible climate model, how such properties depend on the energy input of the parent star, on the infrared atmospheric opacity, and on the rotation rate. It is possible to reproduce the multi-stability properties reminiscent of the paleoclimatologically relevant snowball (SB) - warm (W) conditions. We then study the thermodynamics of the W and SB states, clarifying the role of the hydrological cycle in shaping the irreversibility and the efficiency of the W states, and emphasizing the extreme diversity of the SB states, where dry conditions are realized. Thermodynamics provides the clue for studying the tipping points of the system and leads us to constructing parametrizations where the main thermodynamic properties are expressed as functions of the emission temperature of the planet only. Such functions are rather robust with respect to changing the rotation rate of the planet from the current terrestrial one to half of it. We then explore the dynamical range of slowy rotating and phase locked planets. There is a critical rotation rate below which the multi-stability properties are lost. Such critical rotation rate corresponds roughly to the phase lock 2:1 condition. Therefore, if an Earth-like planet is 1:1 phase locked with respect to the parent star, only one climatic state would be compatible with a given set of astronomical and astrophysical parameters. These results have relevance for the general theory of planetary circulation and for the definition of necessary and sufficient conditions for habitability.


Archive | 2013

Habitability and multistablility in earth-like plantets

Valerio Lucarini; Salvatore Pascale; Robert Boschi; Edilbert Kirk; Nicolas Iro

We explore the potential multistability of the climate for a planet around the habitable zone. We focus on conditions reminiscent to those of the Earth system, but our investigation aims at presenting a general methodology for dealing with exoplanets. We provide a thorough analysis of the non-equilibrium thermodynamical properties of the climate system and explore, using a a flexible climate model, how such properties depend on the energy input of the parent star, on the infrared atmospheric opacity, and on the rotation rate. It is possible to reproduce the multi-stability properties reminiscent of the paleoclimatologically relevant snowball (SB) - warm (W) conditions. We then study the thermodynamics of the W and SB states, clarifying the role of the hydrological cycle in shaping the irreversibility and the efficiency of the W states, and emphasizing the extreme diversity of the SB states, where dry conditions are realized. Thermodynamics provides the clue for studying the tipping points of the system and leads us to constructing parametrizations where the main thermodynamic properties are expressed as functions of the emission temperature of the planet only. Such functions are rather robust with respect to changing the rotation rate of the planet from the current terrestrial one to half of it. We then explore the dynamical range of slowy rotating and phase locked planets. There is a critical rotation rate below which the multi-stability properties are lost. Such critical rotation rate corresponds roughly to the phase lock 2:1 condition. Therefore, if an Earth-like planet is 1:1 phase locked with respect to the parent star, only one climatic state would be compatible with a given set of astronomical and astrophysical parameters. These results have relevance for the general theory of planetary circulation and for the definition of necessary and sufficient conditions for habitability.


Planetary and Space Science | 2015

Climate of Earth-like planets with high obliquity and eccentric orbits: Implications for habitability conditions

Manuel Linsenmeier; Salvatore Pascale; Valerio Lucarini

Abstract We explore the effects of seasonal variability for the climate of Earth-like planets as determined by the two parameters polar obliquity and orbital eccentricity using a general circulation model of intermediate complexity. In the first part of the paper we examine the consequences of different values of obliquity and eccentricity for the spatio-temporal patterns of radiation and surface temperatures as well as for the main characteristics of the atmospheric circulation. In the second part of the paper we analyse the associated implications for the habitability of planets close to the outer edge of the habitable zone (HZ). The second part focuses in particular on the multistability property of climate, i.e. the parallel existence of both an ice-free and an ice-covered climate state. Our results show that seasonal variability affects both the existence of and transitions between the two climate states. Moreover, our experiments reveal that planets with Earth-like atmospheres and high seasonal variability can have ice-free areas at much larger distance from the host star than planets without seasonal variability, which leads to a substantial expansion of the outer edge of the HZ. Sensitivity experiments exploring the role of azimuthal obliquity and surface heat capacity test the robustness of our results. On circular orbits, our findings obtained with a general circulation model agree well with previous studies based on one dimensional energy balance models, whereas significant differences are found on eccentric orbits.


Climate Dynamics | 2012

A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM

Salvatore Pascale; Jonathan M. Gregory; Maarten H. P. Ambaum; Remi Tailleux

The possibility of applying either the maximum entropy production conjecture of Paltridge (Q J R Meteorol Soc 101:475–484, 1975) or the conjecture of Lorenz (Generation of available potential energy and the intensity of the general circulation. Pergamon, Tarrytown, 1960) of maximum generation of available potential energy (APE) in FAMOUS, a complex but low-resolution AOGCM, is explored by varying some model parameters to which the simulated climate is highly sensitive, particularly the convective entrainment rate,


Climate Dynamics | 2014

Entropy production and coarse graining of the climate fields in a General Circulation Model

Valerio Lucarini; Salvatore Pascale


Planetary and Space Science | 2013

Nonequilibrium thermodynamics of circulation regimes in optically thin, dry atmospheres

Salvatore Pascale; Francesco Ragone; Valerio Lucarini; Yixiong Wang; Robert Boschi

\epsilon


Archive | 2014

Thermodynamic Insights into Transitions Between Climate States Under Changes in Solar and Greenhouse Forcing

Robert Boschi; Valerio Lucarini; Salvatore Pascale

Collaboration


Dive into the Salvatore Pascale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge