Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salvatore Salzano is active.

Publication


Featured researches published by Salvatore Salzano.


Endocrinology | 2000

Iodide excess induces apoptosis in thyroid cells through a p53-independent mechanism involving oxidative stress.

Mario Vitale; Tiziana Di Matola; F. D’Ascoli; Salvatore Salzano; Fausto Bogazzi; Gianfranco Fenzi; Enio Martino; Guido Rossi

Thyroid toxicity of iodide excess has been demonstrated in animals fed with an iodide-rich diet; in vitro iodide is cytotoxic, inhibits cell growth, and induces morphological changes in thyroid cells of some species. In this study, we investigated the effect of iodide excess in an immortalized thyroid cell line (TAD-2) in primary cultures of human thyroid cells and in cells of nonthyroid origin. Iodide displayed a dose-dependent cytotoxicity in both TAD-2 and primary thyroid cells, although at different concentrations, whereas it had no effect on cells of nonthyroid origin. Thyroid cells treated with iodide excess underwent apoptosis, as evidenced by morphological changes, plasma membrane phosphatidylserine exposure, and DNA fragmentation. Apoptosis was unaffected by protein synthesis inhibition, whereas inhibition of peroxidase enzymatic activity by propylthiouracil completely blocked iodide cytotoxicity. During KI treatment, reactive oxygen species were produced, and lipid peroxide levels increased mark...


Journal of Biological Chemistry | 1996

Somatostatin Inhibits PC Cl3 Thyroid Cell Proliferation through the Modulation of Phosphotyrosine Phosphatase Activity IMPAIRMENT OF THE SOMATOSTATINERGIC EFFECTS BY STABLE EXPRESSION OF E1A VIRAL ONCOGENE

Tullio Florio; Antonella Scorziello; Morena Fattore; Vito D'Alto; Salvatore Salzano; Guido Rossi; Maria Teresa Berlingieri; Alfredo Fusco; Gennaro Schettini

In this study, we report the effects of somatostatin on the proliferation of PC Cl3 thyroid cell line and the intracellular mechanisms involved. We also evaluated the possible alterations, induced by E1A oncogene transformation on the intracellular pathways mediating somatostatin inhibition of cell proliferation. We showed that somatostatin was able to powerfully inhibit insulin- and insulin + TSH-dependent cell proliferation by inducing a block in the G/S progression in the cell cycle. These cytostatic effects were completely reverted by vanadate, suggesting that somatostatin may induce antiproliferative effects through the modulation of phosphotyrosine phosphatases. In the E1A-transformed cell line, somatostatin was completely ineffective. The lack of somatostatin inhibitory effects on cell proliferation were not due to alterations in the expression of somatostatin receptors, which were regularly expressed and coupled to adenylyl cyclase activity, but were dependent on an alteration in their coupling with the phosphotyrosine phosphatase. In fact, although in PC Cl3 cells somatostatin increased by 100% phosphotyrosine phosphatase activity, it was completely ineffective in E1A-expressing cells. In conclusion we demonstrated that somatostatin activates phosphotyrosine phosphatases in PC Cl3 thyroid cells to inhibit cell proliferation and that the stable expression of E1A oncogene in these cells completely abolishes this antiproliferative effect.


Journal of Biological Chemistry | 2006

Central Role of the Scaffold Protein Tumor Necrosis Factor Receptor-associated Factor 2 in Regulating Endoplasmic Reticulum Stress-induced Apoptosis

Claudio Mauro; Elvira Crescenzi; Roberta De Mattia; Francesco Pacifico; Stefano Mellone; Salvatore Salzano; Cristiana de Luca; Luciano D'Adamio; Giuseppe Palumbo; Silvestro Formisano; Pasquale Vito; Antonio Leonardi

The endoplasmic reticulum represents the quality control site of the cell for folding and assembly of cargo proteins. A variety of conditions can alter the ability of the endoplasmic reticulum (ER) to properly fold proteins, thus resulting in ER stress. Cells respond to ER stress by activating different signal transduction pathways leading to increased transcription of chaperone genes, decreased protein synthesis, and eventually to apoptosis. In the present paper we analyzed the role that the adaptor protein tumor necrosis factor-receptor associated factor 2 (TRAF2) plays in regulating cellular responses to apoptotic stimuli from the endoplasmic reticulum. Mouse embryonic fibroblasts derived from TRAF2-/- mice were more susceptible to apoptosis induced by ER stress than the wild type counterpart. This increased susceptibility to ER stress-induced apoptosis was because of an increased accumulation of reactive oxygen species following ER stress, and was abolished by the use of antioxidant. In addition, we demonstrated that the NF-κB pathway protects cells from ER stress-induced apoptosis, controlling ROS accumulation. Our results underscore the involvement of TRAF2 in regulating ER stress responses and the role of NF-κB in protecting cells from ER stress-induced apoptosis.


Toxicological Sciences | 2011

Differential Activation of Signaling Pathways Involved in Cell Death, Survival and Inflammation by Radiocontrast Media in Human Renal Proximal Tubular Cells

Michele Andreucci; Gaetano Lucisano; Teresa Faga; Bernardo Bertucci; Oscar Tamburrini; Antonio Pisani; Massimo Sabbatini; Salvatore Salzano; Mario Vitale; Giorgio Fuiano; Ashour Michael

Radiocontrast media (RCM) are widely used in clinical medicine but may lead to radiocontrast-induced nephropathy (RCIN). The pathogenesis of acute renal failure secondary to RCM is not fully understood, but direct toxic effects are believed to be a major cause of RCIN. We have investigated the effect of different types of RCM on signaling pathways known to play a role in cell death, survival, and inflammation. HK-2 cells were incubated with sodium diatrizoate and iomeprol (IOM) at a concentration of 75 mg I/ml for 2 h. Both RCM caused an increase in phosphorylation of p38 mitogen-activated protein kinase (MAPK) (p38) and c-Jun N-terminal kinases (JNKs) and NF-κB (at Ser 276), with sodium diatrizoate having a more drastic effect. Although cell viability was reduced significantly by both RCM, in cells pretreated with IOM the cell viability recovered over a 22-h time period after removal of the RCM. However, viability of diatrizoate-treated cells rose at 5 h but then fell at 22 h after removal of the RCM. The decrease in cell viability in diatrizoate-treated cells corresponded with an increase in phosphorylation of JNKs, p38, and NF-κB and a decrease in phosphorylation of Akt, signal transducer and activator of transcription 3, and forkhead box O3a, as well as poly (ADP-ribose) polymerase and caspase-3 cleavage. The recovery in viability of IOM-treated cells corresponded most notably with an increase in STAT3 phosphorylation and induction of Pim-1 kinase. There was also an increase in interleukin-8 release by diatrizoate-treated cells indicating the possibility of proinflammatory effects of RCM. A knowledge of the signaling pathways by which RCM exert their cytotoxic actions may help in finding future therapies for RCIN.


Molecular and Cellular Biology | 2005

Pendrin is a novel in vivo downstream target gene of the TTF-1/Nkx-2.1 homeodomain transcription factor in differentiated thyroid cells.

Monica Dentice; Cristina Luongo; Antonia Elefante; Raffaele Ambrosio; Salvatore Salzano; Mariastella Zannini; Roberto Nitsch; Roberto Di Lauro; Guido Rossi; Gianfranco Fenzi; Domenico Salvatore

ABSTRACT Thyroid transcription factor gene 1 (TTF-1) is a homeobox-containing gene involved in thyroid organogenesis. During early thyroid development, the homeobox gene Nkx-2.5 is expressed in thyroid precursor cells coincident with the appearance of TTF-1. The aim of this study was to investigate the molecular mechanisms underlying thyroid-specific gene expression. We show that the Nkx-2.5 C terminus interacts with the TTF-1 homeodomain and, moreover, that the expression of a dominant-negative Nkx-2.5 isoform (N188K) in thyroid cells reduces TTF-1-driven transcription by titrating TTF-1 away from its target DNA. This process reduced the expression of several thyroid-specific genes, including pendrin and thyroglobulin. Similarly, down-regulation of TTF-1 by RNA interference reduced the expression of both genes, whose promoters are sensitive to and directly associate with TTF-1 in the chromatin context. In conclusion, we demonstrate that pendrin and thyroglobulin are downstream targets in vivo of TTF-1, whose action is a prime factor in controlling thyroid differentiation in vivo.


Calcified Tissue International | 2003

Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the osteoblastic differentiation of the human osteosarcoma cell line SaOS-2.

Loredana Postiglione; G Di Domenico; Stefania Montagnani; G Di Spigna; Salvatore Salzano; Clotilde Castaldo; Luca Ramaglia; Ludovico Sbordone; Giuseppe Rossi

The Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) is a hematopoietic growth factor that regulates the in vitro and in vivo proliferation and differentiation of hematopoietic cells through the interaction with a specific heterodimeric receptor complex (GM-CSFR), consisting of an a and a b chain with molecular weights of 80 and 120 KDa, respectively. We have studied the expression of the GM-CSFR (a chain) on the surface of the human osteosarcoma cell line SaOS-2 and the in vitro effects of different concentrations (10, 100, and 200 ng/ml) of GM-CSF on GM-CSFR expression and the biological activity of SaOS-2 cells. Our data show that SaOS-2 cells express GM-CSFR and that GM-CSF can down-regulate the expression of its own receptor on these cells. Furthermore, to evaluate the biological effects of GM-CSF on SaOS-2 cells, we have investigated cell proliferation and differentiation of these cells treated with different doses of the growth factor through: (1) a morphological analysis of typical osteoblast differentiation markers such as osteopontin and BSP-II; (2) measurement of alkaline phosphatase (ALP) activity; (3) production of bone ECM components (collagen I, fibronectin, tenascin, and laminin); (4) production of interleukin-6 (IL-6) and osteocalcin in the culture medium. The results show that the in vitro treatment of SaOS-2 cells with recombinant human GM-CSF causes a decreased cell proliferation and an increased production of osteopontin, BSP-II, ALP, IL-6, and most but not all ECM components. These findings suggest that GM-CSF can regulate proliferation and differentiation of osteoblast-like SaOS-2 cells and could also play an unexpected role in the maturation of bone tissue.


FEBS Letters | 2000

Urokinase‐type plasminogen activator up‐regulates the expression of its cellular receptor

Nunzia Montuori; Salvatore Salzano; Guido Rossi; Pia Ragno

The expression of the receptor for the urokinase‐type plasminogen activator (uPAR) can be regulated by several hormones, cytokines, tumor promoters, etc. Recently, it has been reported that uPAR is capable of transducing signals, even though it is lacking a transmembrane domain and a cytoplasmatic tail. We now report that uPAR cell surface expression can be positively regulated by its ligand, uPA, in thyroid cells. The effect of uPA is independent of its proteolytic activity, since inactivated uPA or its aminoterminal fragment have the same effects of the active enzyme. The increase of uPAR on the cell surface correlates with an increase of specific uPAR mRNA. Finally, uPA up‐regulates uPAR expression also in other cell lines of different type and origin, thus suggesting that the regulatory role of uPA on uPAR expression is not restricted to thyroid cells, but it occurs in different tissues, both normal and tumoral.


Cellular and Molecular Life Sciences | 2011

The cross-talk between the urokinase receptor and fMLP receptors regulates the activity of the CXCR4 chemokine receptor

Nunzia Montuori; Katia Bifulco; Maria Vincenza Carriero; Claudio La Penna; Valeria Visconte; Daniela Alfano; Ada Pesapane; Francesca Rossi; Salvatore Salzano; Guido Rossi; Pia Ragno

The receptor (CXCR4) for the stromal-derived factor-1 (SDF1) and the urokinase-receptor (uPAR) are up-regulated in various tumors. We show that CXCR4-transfected cells migrate toward SDF1 on collagen (CG) and do not on vitronectin (VN). Co-expression of cell-surface uPAR, which is a VN receptor, impairs SDF1-induced migration on CG and allows migration on VN. Blocking fMLP receptors (fMLP-R), alpha-v integrins or the uPAR region capable to interact with fMLP-Rs, impairs migration of uPAR/CXCR4-transfected cells on VN and restores their migration on CG. uPAR co-expression also reduces the adherence of CXCR4-expressing cells to various components of the extracellular matrix (ECM) and influences the partitioning of beta1 and alpha-v integrins to membrane lipid-rafts, affecting ECM-dependent signaling. uPAR interference in CXCR4 activity has been confirmed in cells from prostate carcinoma. Our results demonstrate that uPAR expression regulates the adhesive and migratory ability of CXCR4-expressing cells through a mechanism involving fMLP receptors and alpha-v integrins.


Life Sciences | 1998

Expression of GM-CSF receptor and “in vitro” effects of GM-CSF on human fibroblasts

Loredana Postiglione; Stefania Montagnani; Antonio Riccio; Paolo Ladogana; Salvatore Salzano; Luca Vallefuoco; Guido Rossi

In the present study the effects of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) on fibroblast growth and activity have been studied. In this regard the AA have evaluated in primary cultures of human gengival normal fibroblasts (PG1 cells): a)-the expression of GM-CSF receptor (GM-CSFR) (alfa unit) on the cell surface; b)-the in vitro effects of different doses of GM-CSF on the GM-CSFR expression and on the proliferation and activity of fibroblasts. PG1 cells have been stimulated in vitro with different concentrations of GM-CSF (10, 50, 80, 100 and 150 ng/ml) using promonocytic cell line U937 as positive control for GM-CSFR expression. GM-CSFR was investigated by flow cytometry, with mouse monoclonal antibody (mAb) against the alfa chain of the human GM-CSFR and fluorescein-conjugated goat antimouse immunoglobulin G (IgG). At high GM-CSF concentration (80 ng/ml) the AA observed: 1)-A marked increase of GM-CSFR expression evaluated as fluorescence intensity (about three fold in respect to the controls); 2)-Maximal increase of PG1 cells proliferation. Moreover immunofluorescence on fibroblasts obtained from culture plates showed increased actin stress fibers and fibronectin production with low stimulation by GM-CSF, while higher concentration of this cytokine determined increased proliferation of cells, but a decreased formation of actine fibers and vinculin plaques. These results demonstrate: 1)-The presence of GM-CSFR on the surface of fibroblasts; 2)-The proliferation and the synthesis activity of these cells (in vitro) are modulated by different concentration of GM-CSF. We hypothesize that GM-CSF until 80 ng/ml can upregulate the expression of the receptor. Therefore, on the basis of previous findings of high serum levels of GM-CSF in course of scleroderma, a disease characterized by fibroblast hyperactivity, a possible role of this cytokine in the pathogenic process of this disease can be hypothesized.


International Journal of Immunopathology and Pharmacology | 2010

The Plasminogen Activator System in Fibroblasts from Systemic Sclerosis

Loredana Postiglione; Nunzia Montuori; Antonio Riccio; G. Di Spigna; Salvatore Salzano; Giuseppe Rossi; Pia Ragno

Systemic sclerosis (SSc) is characterized by excessive fibrosis throughout the body. There are two major subsets of SSc, diffuse cutaneous Systemic sclerosis (dSSc) and limited cutaneous Systemic sclerosis (ISSc). Fibroblasts play a key role in SSc. The expression and function of the urokinase (uPA)-mediated plasminogen activation (PA) system, a well-characterized system of serine-proteases involved in several pathological processes, has been investigated in SSc fibroblasts. The expression of the components of the PA system, including uPA, its type-1 and type-2 inhibitors (PAI-1 and PAI-2) and its receptor (uPAR), was examined by Western blot in fibroblasts from patients affected by limited and diffuse forms of SSc. uPA and PAI-1 secretion increased only in fibroblasts from ISSc lesions compared to normal fibroblasts. PAI-2 levels were decreased in fibroblasts from both SSc forms. Interestingly, fibroblasts from areas not adjacent to the lesions (not-affected) of the diffuse form showed reduced levels of PAI-1 and increased uPAR expression. Adhesion experiments showed reduced adherence to VN of fibroblasts from ISSc lesions and from non-affected areas of the diffuse form, as compared to normal controls. These results suggest a role for uPA and PAI-1 in the ISSc form, likely related to the activation of latent forms of cytokines and to the accumulation of ECM components, whereas a role for uPAR can be hypothesized in the evolvement of the diffuse form, based on its up-regulation in the non-affected areas.

Collaboration


Dive into the Salvatore Salzano's collaboration.

Top Co-Authors

Avatar

Guido Rossi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Loredana Postiglione

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Mario Vitale

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Gianfranco Fenzi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Pia Ragno

University of Salerno

View shared research outputs
Top Co-Authors

Avatar

Luca Ramaglia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Nunzia Montuori

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Stefania Montagnani

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Rossi

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge