Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sam Dupont is active.

Publication


Featured researches published by Sam Dupont.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2011

CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay

Meike Stumpp; J Wren; Frank Melzner; Michael C. Thorndyke; Sam Dupont

Anthropogenic CO(2) emissions are acidifying the worlds oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO(2) (129 Pa, 1271 μatm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of +100% under elevated pCO(2), while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO(2) spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters.


The Journal of Experimental Biology | 2011

Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification

Sophie Martin; Sophie Richier; Maria-Luiza Pedrotti; Sam Dupont; Charlotte Castejon; Yannis Gerakis; Marie-Emmanuelle Kerros; François Oberhänsli; Jean-Louis Teyssié; Ross Jeffree; Jean-Pierre Gattuso

SUMMARY Ocean acidification is predicted to have significant effects on benthic calcifying invertebrates, in particular on their early developmental stages. Echinoderm larvae could be particularly vulnerable to decreased pH, with major consequences for adult populations. The objective of this study was to understand how ocean acidification would affect the initial life stages of the sea urchin Paracentrotus lividus, a common species that is widely distributed in the Mediterranean Sea and the NE Atlantic. The effects of decreased pH (elevated PCO2) were investigated through physiological and molecular analyses on both embryonic and larval stages. Eggs and larvae were reared in Mediterranean seawater at six pH levels, i.e. pHT 8.1, 7.9, 7.7, 7.5, 7.25 and 7.0. Fertilization success, survival, growth and calcification rates were monitored over a 3 day period. The expression of genes coding for key proteins involved in development and biomineralization was also monitored. Paracentrotus lividus appears to be extremely resistant to low pH, with no effect on fertilization success or larval survival. Larval growth was slowed when exposed to low pH but with no direct impact on relative larval morphology or calcification down to pHT 7.25. Consequently, at a given time, larvae exposed to low pH were present at a normal but delayed larval stage. More surprisingly, candidate genes involved in development and biomineralization were upregulated by factors of up to 26 at low pH. Our results revealed plasticity at the gene expression level that allows a normal, but delayed, development under low pH conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification

Meike Stumpp; Marian Yong-An Hu; Frank Melzner; Magdalena A. Gutowska; Narimane Dorey; Nina Himmerkus; Wiebke C. Holtmann; Sam Dupont; Michael C. Thorndyke; Markus Bleich

Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid–base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H+-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pHe and pHi) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO2 conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO2. Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pHe whenever seawater pH changes. However, measurements of pHi demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na+ and HCO3−, suggesting a bicarbonate buffer mechanism involving secondary active Na+-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pHi enables calcification to proceed despite decreased pHe. However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.


Journal of Experimental Zoology | 2010

Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus

Sam Dupont; Bengt Lundve; Michael C. Thorndyke

Ocean acidification (OA) is believed to be a major threat for near-future marine ecosystems, and that the most sensitive organisms will be calcifying organisms and the free-living larval stages produced by most benthic marine species. In this respect, echinoderms are one of the taxa most at risk. Earlier research on the impact of near-future OA on echinoderm larval stages showed negative effects, such as a decreased growth rate, increased mortality, and developmental abnormalities. However, all the long-term studies were performed on planktotrophic larvae while alternative life-history strategies, such as nonfeeding lecithotrophy, were largely ignored. Here, we show that lecithotrophic echinoderm larvae and juveniles are positively impacted by ocean acidification. When cultured at low pH, larvae and juveniles of the sea star Crossaster papposus grow faster with no visible affects on survival or skeletogenesis. This suggests that in future oceans, lecithotrophic species may be better adapted to deal with the threat of OA compared with planktotrophic ones with potentially important consequences at the ecosystem level. For example, an increase in populations of the top predator C. papposus will likely have huge consequences for community structure. Our results also highlight the importance of taking varying life-history strategies into account when assessing the impacts of climate change, an approach that also provides insight into understanding the evolution of life-history strategies.


Ecology and Evolution | 2012

Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions

Anke Kremp; Anna Godhe; Jenny Egardt; Sam Dupont; Sanna Suikkanen; Silvia Casabianca; Antonella Penna

Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24°C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth—slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Unique system of photoreceptors in sea urchin tube feet

Esther Ullrich-Lüter; Sam Dupont; Enrique Arboleda; Harald Hausen; Maria Ina Arnone

Different sea urchin species show a vast variety of responses to variations in light intensity; however, despite this behavioral evidence for photosensitivity, light sensing in these animals has remained an enigma. Genome information of the recently sequenced purple sea urchin (Strongylocentrotus purpuratus) allowed us to address this question from a previously unexplored molecular perspective by localizing expression of the rhabdomeric opsin Sp-opsin4 and Sp-pax6, two genes essential for photoreceptor function and development, respectively. Using a specifically designed antibody against Sp-Opsin4 and in situ hybridization for both genes, we detected expression in two distinct groups of photoreceptor cells (PRCs) located in the animals numerous tube feet. Specific reactivity of the Sp-Opsin4 antibody with sea star optic cushions, which regulate phototaxis, suggests a similar visual function in sea urchins. Ultrastructural characterization of the sea urchin PRCs revealed them to be of a microvillar receptor type. Our data suggest that echinoderms, in contrast to chordates, deploy a microvillar, r-opsin–expressing PRC type for vision, a feature that has been so far documented only in protostome animals. Surprisingly, sea urchin PRCs lack any associated screening pigment. Indeed, one of the tube foot PRC clusters may account for directional vision by being shaded through the opaque calcite skeleton. The PRC axons connect to the animal internal nervous system, suggesting an integrative function beyond local short circuits. Because juveniles display no phototaxis until skeleton completion, we suggest a model in which the entire sea urchin, deploying its skeleton as PRC screening device, functions as a huge compound eye.


Nature | 2013

Marine science: Get ready for ocean acidification

Sam Dupont; Hans-Otto Pörtner

Sam Dupont and Hans Portner call for experiments of greater complexity that can probe how plummeting pH will affect marine ecosystems as the climate warms.


Aquatic Toxicology | 2011

Immune suppression of the echinoderm Asterias rubens (L.) following long-term ocean acidification

Bodil Hernroth; Susanne Baden; Michael C. Thorndyke; Sam Dupont

We compared effects of exposure to predict near-future (2100) ocean acidification (OA; pH 7.7) and normal seawater (Control; pH 8.1) on immune and stress responses in the adult sea star Asterias rubens. Analyses were made after one week and after six months of continuous exposure. Following one week exposure to acidified water, the pH of coelomic fluid was significantly reduced. Levels of the chaperon Hsp70 were elevated while key cellular players in immunity, coelomocytes, were reduced by approximately 50%. Following long-term exposure (six months) levels of Hsp70 returned to control values, whereas immunity was further impaired, evidenced by the reduced phagocytic capacity of coelomocytes and inhibited activation of p38 MAP-kinase. Such impacts of reduced seawater pH may have serious consequences for resistance to pathogens in a future acidified ocean.


Ecology and Evolution | 2013

Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish

Elisabet Forsgren; Sam Dupont; Fredrik Jutfelt; Trond Amundsen

As an effect of anthropogenic CO2 emissions, the chemistry of the worlds oceans is changing. Understanding how this will affect marine organisms and ecosystems are critical in predicting the impacts of this ongoing ocean acidification. Work on coral reef fishes has revealed dramatic effects of elevated oceanic CO2 on sensory responses and behavior. Such effects may be widespread but have almost exclusively been tested on tropical reef fishes. Here we test the effects elevated CO2 has on the reproduction and early life history stages of a temperate coastal goby with paternal care by allowing goby pairs to reproduce naturally in an aquarium with either elevated (ca 1400 μatm) CO2 or control seawater (ca 370 μatm CO2). Elevated CO2 did not affect the occurrence of spawning nor clutch size, but increased embryonic abnormalities and egg loss. Moreover, we found that elevated CO2 significantly affected the phototactic response of newly hatched larvae. Phototaxis is a vision-related fundamental behavior of many marine fishes, but has never before been tested in the context of ocean acidification. Our findings suggest that ocean acidification affects embryonic development and sensory responses in temperate fishes, with potentially important implications for fish recruitment.


Marine Biology | 2013

Towards improved socio-economic assessments of ocean acidification’s impacts

Nathalie Hilmi; Denis Allemand; Sam Dupont; Alain Safa; Gunnar Haraldsson; Paulo A. L. D. Nunes; Chris Moore; Caroline Hattam; Stéphanie Reynaud; Jason M. Hall-Spencer; Maoz Fine; Cm Turley; Ross Jeffree; James C. Orr; Philip L. Munday; Sarah R. Cooley

Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.

Collaboration


Dive into the Sam Dupont's collaboration.

Top Co-Authors

Avatar

Michael C. Thorndyke

Royal Swedish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Meike Stumpp

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Youji Wang

Shanghai Ocean University

View shared research outputs
Top Co-Authors

Avatar

Mike Thorndyke

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Menghong Hu

Shanghai Ocean University

View shared research outputs
Top Co-Authors

Avatar

Weiqun Lu

Shanghai Ocean University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Narimane Dorey

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Xizhi Huang

Shanghai Ocean University

View shared research outputs
Top Co-Authors

Avatar

Kit Yu Karen Chan

Hong Kong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge