Sam Kassegne
San Diego State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sam Kassegne.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Jeremy J. Barr; Rita Auro; Nicholas Sam-Soon; Sam Kassegne; Gregory Peters; Natasha Bonilla; Mark Hatay; Sarah Mourtada; Barbara A. Bailey; Merry Youle; Ben Felts; Arlette R. C. Baljon; Jim Nulton; Peter Salamon; Forest Rohwer
Significance Bacteriophages (phages) are viruses that infect and kill bacteria. Being inanimate, phages rely on diffusion to search for bacterial prey. Here we demonstrate that a phage that adheres weakly to mucus exhibits subdiffusive motion, not normal diffusion, in mucosal surfaces. Supporting theory and experiments revealed that subdiffusive motion increases bacterial encounter rates for phages when bacterial concentration is low. To the best of our knowledge, no other predator has been shown to effectively use a subdiffusive search mechanism. Mucosal surfaces are vulnerable to infection. Mucus-adherent phages reduce bacterial infection of lifelike mucosal surfaces more effectively than nonadherent phages. These findings provide a basis for engineering adherent phages to manipulate mucosal surface microbiomes for protection from infection and other purposes. Bacteriophages (phages) defend mucosal surfaces against bacterial infections. However, their complex interactions with their bacterial hosts and with the mucus-covered epithelium remain mostly unexplored. Our previous work demonstrated that T4 phage with Hoc proteins exposed on their capsid adhered to mucin glycoproteins and protected mucus-producing tissue culture cells in vitro. On this basis, we proposed our bacteriophage adherence to mucus (BAM) model of immunity. Here, to test this model, we developed a microfluidic device (chip) that emulates a mucosal surface experiencing constant fluid flow and mucin secretion dynamics. Using mucus-producing human cells and Escherichia coli in the chip, we observed similar accumulation and persistence of mucus-adherent T4 phage and nonadherent T4∆hoc phage in the mucus. Nevertheless, T4 phage reduced bacterial colonization of the epithelium >4,000-fold compared with T4∆hoc phage. This suggests that phage adherence to mucus increases encounters with bacterial hosts by some other mechanism. Phages are traditionally thought to be completely dependent on normal diffusion, driven by random Brownian motion, for host contact. We demonstrated that T4 phage particles displayed subdiffusive motion in mucus, whereas T4∆hoc particles displayed normal diffusion. Experiments and modeling indicate that subdiffusive motion increases phage–host encounters when bacterial concentration is low. By concentrating phages in an optimal mucus zone, subdiffusion increases their host encounters and antimicrobial action. Our revised BAM model proposes that the fundamental mechanism of mucosal immunity is subdiffusion resulting from adherence to mucus. These findings suggest intriguing possibilities for engineering phages to manipulate and personalize the mucosal microbiome.
Scientific Reports | 2017
Maria Vomero; Elisa Castagnola; Francesca Ciarpella; Emma Maggiolini; Noah Goshi; Elena Zucchini; Stefano Carli; Luciano Fadiga; Sam Kassegne; Davide Ricci
We report on the superior electrochemical properties, in-vivo performance and long term stability under electrical stimulation of a new electrode material fabricated from lithographically patterned glassy carbon. For a direct comparison with conventional metal electrodes, similar ultra-flexible, micro-electrocorticography (μ-ECoG) arrays with platinum (Pt) or glassy carbon (GC) electrodes were manufactured. The GC microelectrodes have more than 70% wider electrochemical window and 70% higher CTC (charge transfer capacity) than Pt microelectrodes of similar geometry. Moreover, we demonstrate that the GC microelectrodes can withstand at least 5 million pulses at 0.45 mC/cm2 charge density with less than 7.5% impedance change, while the Pt microelectrodes delaminated after 1 million pulses. Additionally, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was selectively electrodeposited on both sets of devices to specifically reduce their impedances for smaller diameters (<60 μm). We observed that PEDOT-PSS adhered significantly better to GC than Pt, and allowed drastic reduction of electrode size while maintaining same amount of delivered current. The electrode arrays biocompatibility was demonstrated through in-vitro cell viability experiments, while acute in vivo characterization was performed in rats and showed that GC microelectrode arrays recorded somatosensory evoked potentials (SEP) with an almost twice SNR (signal-to-noise ratio) when compared to the Pt ones.
Smart Materials and Structures | 2010
Michael Frank; Kee S. Moon; Sam Kassegne
A highly sensitive lead magnesium niobate–lead titanate (PMN–PT) single crystal resonator coated with a thin film of polymethylmethacrylate (PMMA) useful for detecting chemical agents such as acetone, methanol, and isopropyl alcohol is presented. Swelling of the cured PMMA polymer layer in the presence of acetone, methanol, and isopropyl alcohol vapors is sensed as a mass change transduced to an electrical signal by the PMN–PT thickness shear mode sensor. Frequency change in the PMN–PT sensor is demonstrated to vary according to the concentration of the chemical vapor present within the sensing chamber. For acetone, the results indicate a frequency change more than 6000 times greater than that which would be expected from a quartz crystal microbalance coated with PMMA. This study is the first of its kind to demonstrate vapor loading of adsorbed chemical agents onto a polymer coated PMN–PT resonator.
Journal of Micromechanics and Microengineering | 2016
Maria Vomero; Pieter van Niekerk; Vivian Nguyen; Nick Gong; Mieko Hirabayashi; Alessio Cinopri; Kyle Logan; Ali Moghadasi; Priya Varma; Sam Kassegne
We present a novel technology for transferring glassy carbon microstructures, originally fabricated on a silicon wafer through a high-temperature process, to a polymeric flexible substrate such as polyimide. This new transfer technique addresses a major barrier in Carbon-MEMS technology whose widespread use so has been hampered by the high-temperature pyrolysis process (≥900 °C), which limits selection of substrates. In the new approach presented, patterning and pyrolysis of polymer precursor on silicon substrate is carried out first, followed by coating with a polymer layer that forms a hydrogen bond with glassy carbon and then releasing the ensuing glassy carbon structure; hence, transferring it to a flexible substrate. This enables the fabrication of a unique set of glassy carbon microstructures critical in applications that demand substrates that conform to the shape of the stimulated/actuated or sensed surface. Our findings based on Fourier transform infared spectroscopy on the complete electrode set demonstrate—for the first time—that carbonyl groups on polyimide substrate form a strong hydrogen bond with hydroxyl groups on glassy carbon resulting in carboxylic acid dimers (peaks at 2660 and 2585 cm−1). This strong bond is further confirmed by a tensile test that demonstrated an almost perfect bond between these materials that behave as an ideal composite material. Further, mechanical characterization shows that ultimate strain for such a structure is as high as 15% with yield stress of ~20 MPa. We propose that this novel technology not only offers a compelling case for the widespread use of carbon-MEMS, but also helps move the field in new and exciting directions.
Journal of Micromechanics and Microengineering | 2012
Sam Kassegne; Kee Moon; Pablo Martín-Ramos; Mohammad Majzoub; Gunay Őzturk; Krishna Desai; Mihir Parikh; Bao Nguyen; Ajit Khosla; Pedro Chamorro-Posada
A novel approach based on three-dimensional (3D) architecture for polymeric photovoltaic cells made up of an array of sub-micron and nano-pillars which not only increase the area of the light absorbing surface, but also improve the carrier collection efficiency of bulk-heterojunction organic solar cells is presented. The approach also introduces coating of 3D anodes with a new solution-processable highly conductive transparent polymer (Orgacon™) that replaces expensive vacuum-deposited ITO (indium tin oxide) as well as the additional hole-collecting layer of conventional PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)). In addition, the described procedure is well suited to roll-to-roll high-throughput manufacturing. The high aspect-ratio 3D pillars which form the basis for this new architecture are patterned through micro-electromechanical-system- and nano-electromechanical-system-based processes. For the particular case of P3HT (poly(3-hexylthiophene)) and PCBM (phenyl-C61-butyric acid methyl ester) active material, efficiencies in excess of 6% have been achieved for these photovoltaic cells of 3D architecture using ITO-less flexible PET (polyethylene terephthalate) substrates. This increase in efficiency turns out to be more than twice higher than those achieved for their 2D counterparts.
Biointerphases | 2017
Elisa Castagnola; Stefano Carli; Maria Vomero; Alice Scarpellini; Mirko Prato; Noah Goshi; Luciano Fadiga; Sam Kassegne; Davide Ricci
The authors present an electrochemically controlled, drug releasing neural interface composed of a glassy carbon (GC) microelectrode array combined with a multilayer poly(3,4-ethylenedioxythiophene) (PEDOT) coating. The system integrates the high stability of the GC electrode substrate, ideal for electrical stimulation and electrochemical detection of neurotransmitters, with the on-demand drug-releasing capabilities of PEDOT-dexamethasone compound, through a mechanically stable interlayer of PEDOT-polystyrene sulfonate (PSS)-carbon nanotubes (CNT). The authors demonstrate that such interlayer improves both the mechanical and electrochemical properties of the neural interface, when compared with a single PEDOT-dexamethasone coating. Moreover, the multilayer coating is able to withstand 10 × 106 biphasic pulses and delamination test with negligible change to the impedance spectra. Cross-section scanning electron microscopy images support that the PEDOT-PSS-CNT interlayer significantly improves the adhesion between the GC substrate and PEDOT-dexamethasone coating, showing no discontinuities between the three well-interconnected layers. Furthermore, the multilayer coating has superior electrochemical properties, in terms of impedance and charge transfer capabilities as compared to a single layer of either PEDOT coating or the GC substrate alone. The authors verified the drug releasing capabilities of the PEDOT-dexamethasone layer when integrated into the multilayer interface through repeated stimulation protocols in vitro, and found a pharmacologically relevant release of dexamethasone.
Advanced Biosystems | 2018
Maria Vomero; Elisa Castagnola; Juan S. Ordonez; Stefano Carli; Elena Zucchini; Emma Maggiolini; Calogero Gueli; Noah Goshi; Francesca Ciarpella; Claudia Cea; Luciano Fadiga; Davide Ricci; Sam Kassegne; Thomas Stieglitz
Thin‐film neural devices are an appealing alternative to traditional implants, although their chronic stability remains matter of investigation. In this study, a chronically stable class of thin‐film devices for electrocorticography is manufactured incorporating silicon carbide and diamond‐like carbon as adhesion promoters between glassy carbon (GC) electrodes and polyimide and between GC and platinum traces. The devices are aged in three solutions—phosphate‐buffered saline (PBS), 30 × 10−3 and 150 × 10−3m H2O2/PBS—and stressed using cyclic voltammetry (2500 cycles) and 20 million biphasic pulses. Electrochemical impedance spectroscopy (EIS) and image analysis are performed to detect eventual changes of the electrodes morphology. Results demonstrate that the devices are able to undergo chemically induced oxidative stress and electrical stimulation without failing but actually improving their electrical performance until a steady state is reached. Additionally, cell viability tests are carried out to verify the noncytotoxicity of the materials, before chronically implanting them into rat models. The behavior of the GC electrodes in vivo is monitored through EIS and sensorimotor evoked potential recordings which confirm that, with GC being activated, impedance lowers and quality of recorded signal improves. Histological analysis of the brain tissue is performed and shows no sign of severe immune reaction to the implant.
MRS Advances | 2018
Elisa Castagnola; Nasim W Vahidi; Surabhi Nimbalkar; Srihita Rudraraju; Marvin Thielk; Elena Zucchini; Claudia Cea; Stefano Carli; Timothy Q. Gentner; Davide Ricci; Luciano Fadiga; Sam Kassegne
In this study, we present a 4-channel intracortical glassy carbon (GC) microelectrode array on a flexible substrate for the simultaneous in vivo neural activity recording and dopamine (DA) concentration measurement at four different brain locations (220μm vertical spacing). The ability of GC microelectrodes to detect DA was firstly assessed in vitro in phosphate-buffered saline solution and then validated in vivo measuring spontaneous DA concentration in the Striatum of European Starling songbird through fast scan cyclic voltammetry (FSCV). The capability of GC microelectrode arrays and commercial penetrating metal microelectrode arrays to record neural activity from the Caudomedial Neostriatum of European starling songbird was compared. Preliminary results demonstrated the ability of GC microelectrodes in detecting neurotransmitters release and recording neural activity in vivo. GC microelectrodes array may, therefore, offer a new opportunity to understand the intimate relations linking electrophysiological parameters with neurotransmitters release.
international ieee/embs conference on neural engineering | 2017
Maria Vomero; Elisa Castagnola; Juan S. Ordonez; Stefano Carli; Elena Zucchini; Emma Maggiolini; Calogero Gueli; Noah Goshi; Luciano Fadiga; Davide Ricci; Sam Kassegne; Thomas Stieglitz
Long-term stability of neural interfaces is a challenge that has still to be overcome. In this study, we manufactured a highly stable multi-layer thin-film class of carbon-based devices for electrocorticography (ECoG) incorporating silicon carbide (SiC) and amorphous carbon (DLC) as adhesion promoters between glassy carbon (GC) electrodes and polyimide (PI) substrate and between PI and platinum (Pt) traces. We aged the thin-film electrodes in 30 mM H2O2 at 39 °C for one week - to mimic the effects of post-surgery inflammatory reaction - and subsequently stressed them with 2500 CV cycles. We additionally performed stability tests stimulating the electrodes with 15 million biphasic pulses. Finally, we implanted the electrodes for 6 weeks into rat models and optically characterized the explanted devices. Results show that the fabricated ECoG devices were able to withstand the in vitro and in vivo tests without significant change in impedance and morphology.
Scientific Reports | 2018
Surabhi Nimbalkar; Elisa Castagnola; Arvind Balasubramani; Alice Scarpellini; Soshi Samejima; Abed Khorasani; Adrien Boissenin; Sanitta Thongpang; Chet T. Moritz; Sam Kassegne
We present a new class of carbon-based neural probes that consist of homogeneous glassy carbon (GC) microelectrodes, interconnects and bump pads. These electrodes have purely capacitive behavior with exceptionally high charge storage capacity (CSC) and are capable of sustaining more than 3.5 billion cycles of bi-phasic pulses at charge density of 0.25 mC/cm2. These probes enable both high SNR (>16) electrical signal recording and remarkably high-resolution real-time neurotransmitter detection, on the same platform. Leveraging a new 2-step, double-sided pattern transfer method for GC structures, these probes allow extended long-term electrical stimulation with no electrode material corrosion. Cross-section characterization through FIB and SEM imaging demonstrate strong attachment enabled by hydroxyl and carbonyl covalent bonds between GC microstructures and top insulating and bottom substrate layers. Extensive in-vivo and in-vitro tests confirmed: (i) high SNR (>16) recordings, (ii) highest reported CSC for non-coated neural probe (61.4 ± 6.9 mC/cm2), (iii) high-resolution dopamine detection (10 nM level - one of the lowest reported so far), (iv) recording of both electrical and electrochemical signals, and (v) no failure after 3.5 billion cycles of pulses. Therefore, these probes offer a compelling multi-modal platform for long-term applications of neural probe technology in both experimental and clinical neuroscience.