Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sam M.J.G. Steyaert is active.

Publication


Featured researches published by Sam M.J.G. Steyaert.


Biology Letters | 2013

Infanticide as a male reproductive strategy has a nutritive risk effect in brown bears

Sam M.J.G. Steyaert; Christine Reusch; Sven Brunberg; Jon E. Swenson; Klaus Hackländer; Andreas Zedrosser

Behavioural strategies to reduce predation risk can incur costs, which are often referred to as risk effects. A common strategy to avoid predation is spatio-temporal avoidance of predators, in which prey typically trade optimal resources for safety. Analogous with predator–prey theory, risk effects should also arise in species with sexually selected infanticide (SSI), in which females with dependent offspring avoid infanticidal males. SSI can be common in brown bear (Ursus arctos) populations and explains spatio-temporal segregation among reproductive classes. Here, we show that in a population with SSI, females with cubs-of-the-year had lower quality diets than conspecifics during the SSI high-risk period, the mating season. After the mating season, their diets were of similar quality to diets of their conspecifics. Our results suggest a nutritive risk effect of SSI, in which females with cubs-of-the-year alter their resource selection and trade optimal resources for offspring safety. Such risk effects can add to female costs of reproduction and may be widespread among species with SSI.


Proceedings of the Royal Society B: Biological Sciences | 2016

Human shields mediate sexual conflict in a top predator

Sam M.J.G. Steyaert; Martin Leclerc; Fanie Pelletier; Jonas Kindberg; Sven Brunberg; Jon E. Swenson; Andreas Zedrosser

Selecting the right habitat in a risky landscape is crucial for an individuals survival and reproduction. In predator–prey systems, prey often can anticipate the habitat use of their main predator and may use protective associates (i.e. typically an apex predator) as shields against predation. Although never tested, such mechanisms should also evolve in systems in which sexual conflict affects offspring survival. Here, we assessed the relationship between offspring survival and habitat selection, as well as the use of protective associates, in a system in which sexually selected infanticide (SSI), rather than interspecific predation, affects offspring survival. We used the Scandinavian brown bear (Ursus arctos) population with SSI in a human-dominated landscape as our model system. Bears, especially adult males, generally avoid humans in our study system. We used resource selection functions to contrast habitat selection of GPS-collared mothers that were successful (i.e. surviving litters, n = 19) and unsuccessful (i.e. complete litter loss, n = 11) in keeping their young during the mating season (2005–2012). Habitat selection was indeed a predictor of litter survival. Successful mothers were more likely to use humans as protective associates, whereas unsuccessful mothers avoided humans. Our results suggest that principles of predator–prey and fear ecology theory (e.g. non-consumptive and cascading effects) can also be applied to the context of sexual conflict.


Ecology and Evolution | 2014

Litter loss triggers estrus in a nonsocial seasonal breeder

Sam M.J.G. Steyaert; Jon E. Swenson; Andreas Zedrosser

Sexually selected infanticide (SSI) is often presumed to be rare among seasonal breeders, because it would require a near immediate return to estrus after the loss of an entire litter during the mating season. We evaluated changes in reproductive strategies and the reproductive fate of females that experienced litter loss during the mating season in a seasonal breeder with strong evidence for SSI, the brown bear. First, we used a long-term demographic dataset (1986–2011) to document that a large majority of females (>91%) that lose their entire litter during the mating season in fact do enter estrus, mate, and give birth during the subsequent birthing season. Second, we used high-resolution movement data (2005–2011) to evaluate how females changed reproductive strategies after losing their entire litter during the mating season. We hypothesized that females would shift from the sedentary lifestyle typical for females with cubs-of-the-year to a roam-to-mate behavior typical for receptive females in no more than a few (∼3) days after litter loss. We found that females with cubs-of-the-year moved at about 1/3 of the rate and in a less bimodal diurnal pattern than receptive females during the mating season. The probability of litter loss was positively related with movement rate, suggesting that being elusive and sedentary is a strategy to enhance cub survival rather than a relic of cub mobility itself. The movement patterns of receptive females and females after litter loss were indistinguishable within 1–2 days after the litter loss, and we illustrate that SSI can significantly reduce the female interbirth interval (50–85%). Our results suggest that SSI can also be advantageous for males in seasonally breeding mammals. We propose that infanticide as a male reproductive strategy is more prevalent among mammals with reproductive seasonality than observed or reported.


Behavioral Ecology and Sociobiology | 2016

Bears and berries: species-specific selective foraging on a patchily distributed food resource in a human-altered landscape

Anne Hertel; Sam M.J.G. Steyaert; Andreas Zedrosser; Atle Mysterud; Hanna Kavli Lodberg-Holm; Henriette Wathne Gelink; Jonas Kindberg; Jon E. Swenson

When animals are faced with extraordinary energy-consuming events, like hibernation, finding abundant, energy-rich food resources becomes particularly important. The profitability of food resources can vary spatially, depending on occurrence, quality, and local abundance. Here, we used the brown bear (Ursus arctos) as a model species to quantify selective foraging on berries in different habitats during hyperphagia in autumn prior to hibernation. During the peak berry season in August and September, we sampled berry occurrence, abundance, and sugar content, a proxy for quality, at locations selected by bears for foraging and at random locations in the landscape. The factors determining selection of berries were species specific across the different habitats. Compared to random locations, bears selected locations with a higher probability of occurrence and higher abundance of bilberries (Vaccinium myrtillus) and a higher probability of occurrence, but not abundance, of lingonberries (Vaccinium vitis-idaea). Crowberries (Empetrum hermaphroditum) were least available and least used. Sugar content affected the selection of lingonberries, but not of bilberries. Abundance of bilberries at random locations decreased and abundance of lingonberries increased during fall, but bears did not adjust their foraging strategy by increasing selection for lingonberries. Forestry practices had a large effect on berry occurrence and abundance, and brown bears responded by foraging most selectively in mature forests and on clearcuts. This study shows that bears are successful in navigating human-shaped forest landscapes by using areas of higher than average berry abundance in a period when abundant food intake is particularly important to increase body mass prior to hibernation.Significance statementFood resources heterogeneity, caused by spatial and temporal variation of specific foods, poses a challenge to foragers, particularly when faced with extraordinary energy-demanding events, like hibernation. Brown bears in Sweden inhabit a landscape shaped by forestry practices. Bilberries and lingonberries, the bears’ main food resources in autumn prior to hibernation, show different temporal and habitat-specific ripening patterns. We quantified the bears’ selective foraging on these berry species on clearcuts, bogs, young, and mature forests compared to random locations. Despite a temporal decline of ripe bilberries, bears used locations with a greater occurrence and abundance of bilberries, but not lingonberries. We conclude that bears successfully navigated in this heavily human-shaped landscape by selectively foraging in high-return habitats for bilberries, but did not compensate for the decline in bilberries by eating more lingonberries.


Journal of Animal Ecology | 2017

Hunting promotes sexual conflict in brown bears.

Jacinthe Gosselin; Martin Leclerc; Andreas Zedrosser; Sam M.J.G. Steyaert; Jon E. Swenson; Fanie Pelletier

Summary The removal of individuals through hunting can destabilize social structure, potentially affecting population dynamics. Although previous studies have shown that hunting can indirectly reduce juvenile survival through increased sexually selected infanticide (SSI), very little is known about the spatiotemporal effects of male hunting on juvenile survival. Using detailed individual monitoring of a hunted population of brown bears (Ursus arctos) in Sweden (1991–2011), we assessed the spatiotemporal effect of male removal on cub survival. We modelled cub survival before, during and after the mating season. We used three proxies to evaluate spatial and temporal variation in male turnover; distance and timing of the closest male killed and number of males that died around a females home range centre. Male removal decreased cub survival only during the mating season, as expected in seasonal breeders with SSI. Cub survival increased with distance to the closest male killed within the previous 1·5 years, and it was lower when the closest male killed was removed 1·5 instead of 0·5 year earlier. We did not detect an effect of the number of males killed. Our results support the hypothesis that social restructuring due to hunting can reduce recruitment and suggest that the distribution of the male deaths might be more important than the overall number of males that die. As the removal of individuals through hunting is typically not homogenously distributed across the landscape, spatial heterogeneity in hunting pressure may cause source–sink dynamics, with lower recruitment in areas of high human‐induced mortality.


Wildlife Biology | 2016

Ecological implications from spatial patterns in human-caused brown bear mortality

Sam M.J.G. Steyaert; Andreas Zedrosser; Marcus Elfström; Andrés Ordiz; Martin Leclerc; Shane C. Frank; Jonas Kindberg; Ole-Gunnar Støen; Sven Brunberg; Jon E. Swenson

Humans are important agents of wildlife mortality, and understanding such mortality is paramount for effective population management and conservation. However, the spatial mechanisms behind wildlife mortality are often assumed rather than tested, which can result in unsubstantiated caveats in ecological research (e.g. fear ecology assumptions) and wildlife conservation and/or management (e.g. ignoring ecological traps). We investigated spatial patterns in human-caused mortality based on 30 years of brown bear Ursus arctos mortality data from a Swedish population. We contrasted mortality data with random locations and global positioning system relocations of live bears, as well as between sex, age and management classes (‘problem’ versus ‘no problem’ bear, before and after changing hunting regulations), and we used resource selection functions to identify potential ecological sinks (i.e. avoided habitat with high mortality risk) and traps (i.e. selected habitat with high mortality risk). We found that human-caused mortality and mortality risk were positively associated with human presence and access. Bears removed as a management measure were killed in closer proximity to humans than hunter-killed bears, and supplementary feeding of bears did not alter the spatial structure of human-caused bear mortality. We identified areas close to human presence as potential sink habitat and agricultural fields (oat fields in particular) as potential ecological traps in our study area. We emphasize that human-caused mortality in bears and maybe in wildlife generally can show a very local spatial structure, which may have far-reaching population effects. We encourage researchers and managers to systematically collect and geo-reference wildlife mortality data, in order to verify general ecological assumptions and to inform wildlife managers about critical habitat types. The latter is especially important for vulnerable or threatened populations.


Wildlife Biology | 2012

Faecal spectroscopy: a practical tool to assess diet quality in an opportunistic omnivore

Sam M.J.G. Steyaert; Franziska J. Hütter; Marcus Elfström; Andreas Zedrosser; Klaus Hackländer; Minh Hung Le; Wilhelm M. Windisch; Jon E. Swenson; Tomas Isaksson

Faecal indices of dietary quality can provide useful knowledge about the general ecology of a species, but only if the measurements are accurate and the results are interpreted with caution. In this article, we evaluated the potential of near-infrared spectroscopy (NIRS) as an analytic tool to derive faecal indices of dietary quality in an omnivorous monogastric species with a wide dietary range, i.e. the brown bear Ursus arctos. We also tested the effects of field exposure on faecal constituents (i.e. nitrogen, lignin, crude fiber (CF), ether extracts (EE), acid detergent fiber (ADF), neutral detergent fiber (NDF), ash and dry matter (DM)), which are commonly used as faecal indices of dietary quality. We collected 172 faecal samples from 45 GPS-marked brown bears in south-central Sweden between May and October 2010. For each sample, we recorded maximum field exposure time (in hours) and canopy cover (in %). We used multivariate partial least-squares regression with a segmented cross validation procedure to calibrate the NIRS method. We obtained very good (r2 ≥ 0.9) NIRS validation results for faecal nitrogen content and NDF, and good (0.7 ≤ r2 < 0.9) results for lignin, CF, EE, ADF and ash. Validation results for DM were poor (r2 = 0.29). We found that field exposure time negatively affected faecal nitrogen content, especially during the first 40 hours of exposure. Because CF and NDF are strongly negatively correlated with faecal nitrogen content, concentrations of these two components increase as a consequence of field exposure. Faecal EE content appeared to be stable under field conditions. Our conclusions are twofold. First, NIRS can be an accurate, fast and inexpensive analytical tool to evaluate certain faecal indices of dietary quality, including for omnivorous species. Second, faecal indices of dietary quality can be affected by field exposure and can vary among individual animals. Ignoring individual variance and the effects of field exposure on faecal indices of dietary quality may cause bias in research findings.


Wildlife Biology | 2011

Resource selection by sympatric free-ranging dairy cattle and brown bears Ursus arctos

Sam M.J.G. Steyaert; Ole-Gunnar Støen; Marcus Elfström; Jens Karlsson; Ron Van Lammeren; Jan Bokdam; Andreas Zedrosser; Sven Brunberg; Jon E. Swenson

Abstract Livestock depredation is an important factor that contributes to low public acceptance of large carnivores, and it is often used as an incentive to reduce large carnivore populations. In central Sweden, brown bears Ursus arctos coexist with a traditional cattle husbandry system that allows daytime free-ranging of dairy cattle. Despite a growing brown bear population, depredation on cattle remained stable during the last decade and is among the lowest rates reported worldwide. Nevertheless, major stakeholders argue for a substantial reduction in brown bear numbers, among other reasons, to safeguard the traditional husbandry system. Based on satellite tracking data, we assessed and correlated the resource selection of nine brown bears that were sympatric with six daytime free-ranging cattle herds during the free-ranging season (i.e. June-August) in 2008. We found a significant and negative relationship between resource selection of brown bears and free-ranging cattle during the study period, mainly because of inverse relationships between the species towards vegetation density and human-related infrastructure, such as forest roads, buildings and settlements. We predict that the probability of an encounter between these species, given that there is no directed predation, is highest in dense vegetation patches close to the human habitation-related variables. Because of the low reported depredation rates and the apparent habitat segregation between the species, our results provide no support for the argument to reduce brown bear numbers to safeguard the traditional cattle herding system.


Ursus | 2017

Indirect effects of bear hunting: a review from Scandinavia

Shane C. Frank; Andrés Ordiz; Jacinthe Gosselin; Anne Hertel; Jonas Kindberg; Martin Leclerc; Fanie Pelletier; Sam M.J.G. Steyaert; Ole-Gunnar Støen; Joanie Van de Walle; Andreas Zedrosser; Jon E. Swenson

Abstract:  Harvest by means of hunting is a commonly used tool in large carnivore management. To evaluate the effects of harvest on populations, managers usually focus on numerical or immediate direct demographic effects of harvest mortality on a populations size and growth. However, we suggest that managers should also give consideration to indirect and potential evolutionary effects of hunting (e.g., the consequences of a change in the age, sex, and social structure), and their effects on population growth rate. We define “indirect effects” as hunting-induced changes in a population, including human-induced selection, that result in an additive change to the population growth rate “lambda” beyond that due to the initial offtake from direct mortality. We considered 4 major sources of possible indirect effects from hunting of bears: (1) changes to a populations age and sex structure, (2) changes to a populations social structure, (3) changes in individual behavior, and (4) human-induced selection. We identified empirically supported, as well as expected, indirect effects of hunting based primarily on >30 years of research on the Scandinavian brown bear (Ursus arctos) population. We stress that some indirect effects have been documented (e.g., habitat use and daily activity patterns of bears change when hunting seasons start, and changes in male social structure induce sexually selected infanticide and reduce population growth). Other effects may be more difficult to document and quantify in wild bear populations (e.g., how a younger age structure in males may lead to decreased offspring survival). We suggest that managers of bear and other large carnivore populations adopt a precautionary approach and assume that indirect effects do exist, have a potential impact on population structure, and, ultimately, may have an effect on population growth that differs from that predicted by harvest models based on direct effects alone.


Ecography | 2017

Caught in the mesh: roads and their network-scale impediment to animal movement

Richard Bischof; Sam M.J.G. Steyaert; Jonas Kindberg

Roads have a pervasive multi-faceted influence on ecosystems, including pronounced impacts on wildlife movements. In recognition of the scale-transcending impacts of transportation infrastructure, ecologists have been encouraged to extend the study of barrier impacts from individual roads and animals to networks and populations. In this study, we adopt an analytical representation of road networks as mosaics of landscape tiles, separated by roads. We then adapt spatial capture-recapture analysis to estimate the propensity of wildlife to stay within the boundaries of the road network tiles (RNTs) that hold their activity centres. We fit the model to national non-invasive genetic monitoring data for brown bears (Ursus arctos) in Sweden and show that bears had up to 73% lower odds of using areas outside the network tile of their home range centre, even after accounting for the effect of natural barriers (major rivers) and the decrease in utilization with increasing distance from a bears activity centre. Our study highlights the pronounced landscape-level barrier effect on wildlife mobility and, in doing so, introduces a novel and flexible approach for quantifying contemporary fragmentation from the scale of RNTs and individual animals to transportation networks and populations. This article is protected by copyright. All rights reserved.

Collaboration


Dive into the Sam M.J.G. Steyaert's collaboration.

Top Co-Authors

Avatar

Andreas Zedrosser

University College of Southeast Norway

View shared research outputs
Top Co-Authors

Avatar

Jon E. Swenson

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Jonas Kindberg

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Ole-Gunnar Støen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Sven Brunberg

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Martin Leclerc

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Anne Hertel

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Marcus Elfström

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Shane C. Frank

University College of Southeast Norway

View shared research outputs
Top Co-Authors

Avatar

Fanie Pelletier

Université de Sherbrooke

View shared research outputs
Researchain Logo
Decentralizing Knowledge