Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sam Manna is active.

Publication


Featured researches published by Sam Manna.


Frontiers in Microbiology | 2015

Innovative biological approaches for monitoring and improving water quality.

Sanja Aracic; Sam Manna; Steve Petrovski; Jennifer L. Wiltshire; Gülay Mann; Ashley E. Franks

Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages.


BMC Research Notes | 2013

Identification of a novel pentatricopeptide repeat subfamily with a C-terminal domain of bacterial origin acquired via ancient horizontal gene transfer

Sam Manna; Christian Barth

BackgroundPentatricopeptide repeat (PPR) proteins are a large family of sequence-specific RNA binding proteins involved in organelle RNA metabolism. Very little is known about the origin and evolution of these proteins, particularly outside of plants. Here, we report the identification of a novel subfamily of PPR proteins not found in plants and explore their evolution.ResultsWe identified a novel subfamily of PPR proteins, which all contain a C-terminal tRNA guanine methyltransferase (TGM) domain, suggesting a predicted function not previously associated with PPR proteins. This group of proteins, which we have named the PPR-TGM subfamily, is found in distantly related eukaryotic lineages including cellular slime moulds, entamoebae, algae and diatoms, but appears to be the first PPR subfamily absent from plants. Each PPR-TGM protein identified is predicted to have different subcellular locations, thus we propose that these proteins have roles in tRNA metabolism in all subcellular locations, not just organelles. We demonstrate that the TGM domain is not only similar to bacterial TGM proteins, but that it is most similar to chlamydial TGMs in particular, despite the absence of PPR proteins in bacteria. Based on our data, we postulate that this subfamily of PPR proteins evolved from a TGM-encoding gene of a member of the Chlamydiae, which was obtained via ancient prokaryote-to-eukaryote horizontal gene transfer. Following its acquisition, the N-terminus of the encoded TGM protein must have been extended to include PPR motifs, possibly to confer additional functions to the protein, giving rise to the PPR-TGM subfamily.ConclusionsThe identification of a unique PPR subfamily which originated from the Chlamydiae group of bacteria offers novel insight into the origin and evolution of PPR proteins not previously considered. It also provides further understanding into their roles in non-organellar RNA metabolism.


PLOS ONE | 2013

A Unique Mitochondrial Transcription Factor B Protein in Dictyostelium discoideum

Sam Manna; Phuong Le; Christian Barth

Unlike their bacteriophage homologs, mitochondrial RNA polymerases require the assistance of transcription factors in order to transcribe mitochondrial DNA efficiently. The transcription factor A family has been shown to be important for transcription of the human mitochondrial DNA, with some of its regulatory activity located in its extended C-terminal tail. The mitochondrial transcription factor B family often has functions not only in transcription, but also in mitochondrial rRNA modification, a hallmark of its α-proteobacterial origin. We have identified and characterised a mitochondrial transcription factor B homolog in the soil dwelling cellular slime mould Dictyostelium discoideum, an organism widely established as a model for studying eukaryotic cell biology. Using in bacterio functional assays, we demonstrate that the mitochondrial transcription factor B homolog not only functions as a mitochondrial transcription factor, but that it also has a role in rRNA methylation. Additionally, we show that the transcriptional activation properties of the D. discoideum protein are located in its extended C-terminal tail, a feature not seen before in the mitochondrial transcription factor B family, but reminiscent of the human mitochondrial transcription factor A. This report contributes to our current understanding of the complexities of mitochondrial transcription, and its evolution in eukaryotes.


Comparative and Functional Genomics | 2013

Identification of Pentatricopeptide Repeat Proteins in the Model Organism Dictyostelium discoideum

Sam Manna; Jessica Brewster; Christian Barth

Pentatricopeptide repeat (PPR) proteins are RNA binding proteins with functions in organelle RNA metabolism. They are found in all eukaryotes but have been most extensively studied in plants. We report on the identification of 12 PPR-encoding genes in the genome of the protist Dictyostelium discoideum, with potential homologs in other members of the same lineage and some predicted novel functions for the encoded gene products in protists. For one of the gene products, we show that it localizes to the mitochondria, and we also demonstrate that antisense inhibition of its expression leads to slower growth, a phenotype associated with mitochondrial dysfunction.


BMC Research Notes | 2013

Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption.

Sam Manna; Ashley Harman; Jessica Accari; Christian Barth

BackgroundThe cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker.ResultsWe have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered.ConclusionsChanging the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain.


Clinical Microbiology and Infection | 2017

A novel genetic variant of Streptococcus pneumoniae serotype 11A discovered in Fiji

Sam Manna; Belinda D. Ortika; Eileen M. Dunne; Kathryn E. Holt; Mike Kama; Fiona M. Russell; Jason Hinds; Catherine Satzke

Objectives As part of annual cross-sectional Streptococcus pneumoniae carriage surveys in Fiji (2012–2015), we detected pneumococci in over 100 nasopharyngeal swabs that serotyped as ‘11F-like’ by microarray. We examined the genetic basis of this divergence in the 11F-like capsular polysaccharide (cps) locus compared to the reference 11F cps sequence. The impact of this diversity on capsule phenotype, and serotype results using genetic and serologic methods were determined. Methods Genomic DNA from representative 11F-like S. pneumoniae isolates obtained from the nasopharynx of Fijian children was extracted and subject to whole genome sequencing. Genetic and phylogenetic analyses were used to identify genetic changes in the cps locus. Capsular phenotypes were evaluated using the Quellung reaction and latex agglutination. Results Compared to published 11F sequences, the wcwC and wcrL genes of the 11F-like cps locus are phylogenetically divergent, and the gct gene contains a single nucleotide insertion within a homopolymeric region. These changes within the DNA sequence of the 11F-like cps locus have modified the antigenic properties of the capsule, such that 11F-like isolates serotype as 11A by Quellung reaction and latex agglutination. Conclusions This study demonstrates the ability of molecular serotyping by microarray to identify genetic variants of S. pneumoniae and highlights the potential for discrepant results between phenotypic and genotypic serotyping methods. We propose that 11F-like isolates are not a new serotype but rather are a novel genetic variant of serotype 11A. These findings have implications for invasive pneumococcal disease surveillance as well as studies investigating vaccine impact.


Molecular Phylogenetics and Evolution | 2016

Horizontal gene transfer of a Chlamydial tRNA-guanine transglycosylase gene to eukaryotic microbes ☆

Sam Manna; Ashley Harman

tRNA-guanine transglycosylases are found in all domains of life and mediate the base exchange of guanine with queuine in the anticodon loop of tRNAs. They can also regulate virulence in bacteria such as Shigella flexneri, which has prompted the development of drugs that inhibit the function of these enzymes. Here we report a group of tRNA-guanine transglycosylases in eukaryotic microbes (algae and protozoa) which are more similar to their bacterial counterparts than previously characterized eukaryotic tRNA-guanine transglycosylases. We provide evidence demonstrating that the genes encoding these enzymes were acquired by these eukaryotic lineages via horizontal gene transfer from the Chlamydiae group of bacteria. Given that the S. flexneri tRNA-guanine transglycosylase can be targeted by drugs, we propose that the bacterial-like tRNA-guanine transglycosylases could potentially be targeted in a similar fashion in pathogenic amoebae that possess these enzymes such as Acanthamoeba castellanii. This work also presents ancient prokaryote-to-eukaryote horizontal gene transfer events as an untapped resource of potential drug target identification in pathogenic eukaryotes.


Methods of Molecular Biology | 2013

Analysis of Mitochondrial Gene Expression

Jessica Accari; Sam Manna; Paul R. Fisher; Christian Barth

Dictyostelium provides a well-established model system for the study of mitochondrial biology and disease. A complete mitochondrial transcription and RNA-processing map has been generated, while the start site for transcription and the responsible RNA polymerase have also been identified, as have the major cotranscriptional cleavage sites that generate the mature mitochondrial RNA molecules. Here we describe the methods deployed to study mitochondrial gene transcription and RNA processing in Dictyostelium.


bioRxiv | 2018

Discovery of a Streptococcus pneumoniae serotype 33F capsular polysaccharide locus that lacks wcjE and contains a wcyO pseudogene

Sam Manna; Eileen M. Dunne; Belinda D. Ortika; Casey L. Pell; Mike Kama; Fiona M. Russell; Tuya Mungun; E. Kim Mulholland; Jason Hinds; Catherine Satzke

Objectives As part of large on-going vaccine impact studies in Fiji and Mongolia, we identified 25/2750 (0.9%) of nasopharyngeal swabs by microarray that were positive for Streptococcus pneumoniae contained pneumococci with a divergent 33F capsular polysaccharide locus (designated ‘33F-1’). We investigated the 33F-1 capsular polysaccharide locus to better understand the genetic variation and its potential impact on serotyping results. Methods Whole genome sequencing was conducted on ten 33F-1 pneumococcal isolates. Initially, sequence reads were used for molecular serotyping by PneumoCaT. Phenotypic typing of 33F-1 isolates was then performed using the Quellung reaction and latex agglutination. Genome assemblies were used in phylogenetic analyses of each gene in the capsular locus to investigate genetic divergence. Results All ten pneumococcal isolates with the 33F-1 cps locus typed as 33F by Quellung and latex agglutination. Unlike the reference 33F capsule locus sequence, DNA microarray and PneumoCaT analyses found that 33F-1 pneumococci lack the wcjE gene, and instead contain wcyO with a frameshift mutation. Phylogenetic analyses found the wzg, wzh, wzd, wze, wchA, wciG and glf genes in the 33F-1 cps locus had higher DNA sequence similarity to homologues from other serotypes than to the 33F reference sequence. Conclusions We have discovered a novel genetic variant of serotype 33F, which lacks wcjE and contains a wcyO pseudogene. This finding adds to the understanding of molecular epidemiology of pneumococcal serotype diversity, which is poorly understood in low and middle-income countries.


Scientific Reports | 2018

The transcriptomic response of Streptococcus pneumoniae following exposure to cigarette smoke extract

Sam Manna; Alicia Waring; Angelica Papanicolaou; Nathan E. Hall; Steven Bozinovski; Eileen M. Dunne; Catherine Satzke

Exposure to cigarette smoke is a risk factor for respiratory diseases. Although most research has focused on its effects on the host, cigarette smoke can also directly affect respiratory pathogens, in some cases enhancing virulence. Streptococcus pneumoniae (the pneumococcus) is a leading cause of community-acquired pneumonia worldwide, however data on the effects of cigarette smoke on the pneumococcus are sparse. Using RNA-seq, we show that pneumococci exposed to cigarette smoke extract in a concentrated acute exposure in vitro model initiate a ‘survival’ transcriptional response including the upregulation of detoxification enzymes, efflux pumps and osmoregulator transporters, as well as the downregulation of fatty acid and D-alanyl lipoteichoic acid biosynthesis genes. Except for the downregulation of the pneumolysin gene, there were no changes in the expression of major virulence factors following exposure to cigarette smoke. Compared to unexposed pneumococci, smoke-exposed pneumococci did not exhibit any changes in viability, adherence, hydrophobicity or cell lysis susceptibility. In this study, we demonstrate that pneumococci adapt to acute noxious cigarette smoke exposure by inducing a gene expression signature that allows the bacteria to resist its harmful effects.

Collaboration


Dive into the Sam Manna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eileen M. Dunne

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gülay Mann

Defence Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge