Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sam Virtue is active.

Publication


Featured researches published by Sam Virtue.


Biochimica et Biophysica Acta | 2010

Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome — An allostatic perspective

Sam Virtue; Antonio Vidal-Puig

While the link between obesity and type 2 diabetes is clear on an epidemiological level, the underlying mechanism linking these two common disorders is not as clearly understood. One hypothesis linking obesity to type 2 diabetes is the adipose tissue expandability hypothesis. The adipose tissue expandability hypothesis states that a failure in the capacity for adipose tissue expansion, rather than obesity per se is the key factor linking positive energy balance and type 2 diabetes. All individuals possess a maximum capacity for adipose expansion which is determined by both genetic and environmental factors. Once the adipose tissue expansion limit is reached, adipose tissue ceases to store energy efficiently and lipids begin to accumulate in other tissues. Ectopic lipid accumulation in non-adipocyte cells causes lipotoxic insults including insulin resistance, apoptosis and inflammation. This article discusses the links between adipokines, inflammation, adipose tissue expandability and lipotoxicity. Finally, we will discuss how considering the concept of allostasis may enable a better understanding of how diabetes develops and allow the rational design of new anti diabetic treatments.


PLOS Genetics | 2007

PPAR gamma 2 Prevents Lipotoxicity by Controlling Adipose Tissue Expandability and Peripheral Lipid Metabolism

Gema Medina-Gomez; Sarah L. Gray; Laxman Yetukuri; Kenju Shimomura; Sam Virtue; Mark Campbell; R. Keira Curtis; Mercedes Jimenez-Linan; Margaret Blount; Giles S. H. Yeo; Miguel López; Tuulikki Seppänen-Laakso; Frances M. Ashcroft; Matej Orešič; Antonio Vidal-Puig

Peroxisome proliferator activated receptor gamma 2 (PPARg2) is the nutritionally regulated isoform of PPARg. Ablation of PPARg2 in the ob/ob background, PPARg2−/− Lepob/Lepob (POKO mouse), resulted in decreased fat mass, severe insulin resistance, β-cell failure, and dyslipidaemia. Our results indicate that the PPARg2 isoform plays an important role, mediating adipose tissue expansion in response to positive energy balance. Lipidomic analyses suggest that PPARg2 plays an important antilipotoxic role when induced ectopically in liver and muscle by facilitating deposition of fat as relatively harmless triacylglycerol species and thus preventing accumulation of reactive lipid species. Our data also indicate that PPARg2 may be required for the β-cell hypertrophic adaptive response to insulin resistance. In summary, the PPARg2 isoform prevents lipotoxicity by (a) promoting adipose tissue expansion, (b) increasing the lipid-buffering capacity of peripheral organs, and (c) facilitating the adaptive proliferative response of β-cells to insulin resistance.


Diabetes | 2008

The Human Lipodystrophy Gene BSCL2/Seipin May Be Essential for Normal Adipocyte Differentiation

Victoria A. Payne; Neil Grimsey; Antoinette Tuthill; Sam Virtue; Sarah L. Gray; Edoardo Dalla Nora; Robert K. Semple; Stephen O'Rahilly; Justin J. Rochford

OBJECTIVE—Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is a recessive disorder featuring near complete absence of adipose tissue. Remarkably, although the causative gene, BSCL2, has been known for several years, its molecular function and its role in adipose tissue development have not been elucidated. Therefore, we examined whether BSCL2 is involved in the regulation of adipocyte differentiation and the mechanism whereby pathogenic mutations in BSCL2 cause lipodystrophy. RESEARCH DESIGN AND METHODS—Following the characterization of BSCL2 expression in developing adipocytes, C3H10T1/2 mesenchymal stem cells were generated in which BSCL2 expression was knocked down using short hairpin RNA (shRNA). These cells were used to investigate whether BSCL2 is required for adipogenesis. BSCL2 constructs harboring pathogenic mutations known to cause lipodystrophy were also generated and characterized. RESULTS—BSCL2 expression was strongly induced during adipocyte differentiation, and the induction of BSCL2 expression was essential for adipogenesis to occur. The initial induction of key adipogenic transcription factors, including peroxisome proliferator–activated receptor (PPAR)γ and CAAT/enhancer-binding protein-α, was preserved in cells lacking BSCL2. However, the expression of these critical factors was not sustained, suggesting that the activity of PPARγ was impaired. Moreover, expression of key genes mediating triglyceride synthesis, including AGPAT2, lipin 1, and DGAT2, was persistently reduced and lipid accumulation was inhibited. Analysis of pathogenic missense mutants of BSCL2 revealed that the amino acid substitution A212P causes aberrant targeting of BSCL2 within the cell, suggesting that subcellular localization of BSCL2 may be critical to its function. CONCLUSIONS—This study demonstrates that BSCL2 is an essential, cell-autonomous regulator of adipogenesis.


Diabetes | 2006

Tamoxifen-Induced Anorexia Is Associated With Fatty Acid Synthase Inhibition in the Ventromedial Nucleus of the Hypothalamus and Accumulation of Malonyl-CoA

Miguel López; Christopher J. Lelliott; Sulay Tovar; Wendy Kimber; Rosalía Gallego; Sam Virtue; Margaret Blount; María J. Vázquez; Nick Finer; Trevor J. Powles; Stephen O'Rahilly; Asish K. Saha; Carlos Dieguez; Antonio Vidal-Puig

Fatty acid metabolism in the hypothalamus has recently been shown to regulate feeding. The selective estrogen receptor modulator tamoxifen (TMX) exerts a potent anorectic effect. Here, we show that the anorectic effect of TMX is associated with the accumulation of malonyl-CoA in the hypothalamus and inhibition of fatty acid synthase (FAS) expression specifically in the ventromedial nucleus of the hypothalamus (VMN). Furthermore, we demonstrate that FAS mRNA expression is physiologically regulated by fasting and refeeding in the VMN but not in other hypothalamic nuclei. Thus, the VMN appears to be the hypothalamic site where regulation of FAS and feeding converge. Supporting the potential clinical relevance of these observations, reanalysis of a primary breast cancer prevention study showed that obese women treated with TMX gained significantly less body weight over a 6-year period than obese women given placebo. The finding that TMX can modulate appetite through alterations in FAS expression and malonyl-CoA levels suggests a link between hypothalamic sex steroid receptors, fatty acid metabolism, and feeding behavior.


Diabetes | 2009

Dact1, a Nutritionally Regulated Preadipocyte Gene, Controls Adipogenesis by Coordinating the Wnt/β-Catenin Signaling Network

Claire Lagathu; Constantinos Christodoulides; Sam Virtue; William P. Cawthorn; Chiara Franzin; Wendy Kimber; Edoardo Dalla Nora; Mark Campbell; Gema Medina-Gomez; Benjamin N.R. Cheyette; Antonio Vidal-Puig; Jaswinder K. Sethi

OBJECTIVE—Wnt signaling inhibits adipogenesis, but its regulation, physiological relevance, and molecular effectors are poorly understood. Here, we identify the Wnt modulator Dapper1/Frodo1 (Dact1) as a new preadipocyte gene involved in the regulation of murine and human adipogenesis. RESEARCH DESIGN AND METHODS—Changes in Dact1 expression were investigated in three in vitro models of adipogenesis. In vitro gain- and loss-of-function studies were used to investigate the mechanism of Dact1 action during adipogenesis. The in vivo regulation of Dact1 and Wnt/β-catenin signaling were investigated in murine models of altered nutritional status, of pharmacological stimulation of in vivo adipogenesis, and during the development of dietary and genetic obesity. RESULTS—Dact1 is a preadipocyte gene that decreases during adipogenesis. However, Dact1 knockdown impairs adipogenesis through activation of the Wnt/β-catenin signaling pathway, and this is reversed by treatment with the secreted Wnt antagonist, secreted Frizzled-related protein 1 (Sfrp1). In contrast, constitutive Dact1 overexpression promotes adipogenesis and confers resistance to Wnt ligand-induced antiadipogenesis through increased expression of endogenous Sfrps and reduced expression of Wnts. In vivo, in white adipose tissue, Dact1 and Wnt/β-catenin signaling also exhibit coordinated expression profiles in response to altered nutritional status, in response to pharmacological stimulation of in vivo adipogenesis, and during the development of dietary and genetic obesity. CONCLUSIONS—Dact1 regulates adipogenesis through coordinated effects on gene expression that selectively alter intracellular and paracrine/autocrine components of the Wnt/β-catenin signaling pathway. These novel insights into the molecular mechanisms controlling adipose tissue plasticity provide a functional network with therapeutic potential against diseases, such as obesity and associated metabolic disorders.


Physiological Genomics | 2009

Metabolic phenotyping of a model of adipocyte differentiation

Lee D. Roberts; Sam Virtue; Antonio Vidal-Puig; Andrew W. Nicholls; Julian L. Griffin

The 3T3-L1 murine cell line is a robust and widely used model for the study of adipogenesis and processes occurring in mature adipocytes. The fibroblastic like cells can be induced by hormones to differentiate into mature adipocytes. In this study, the metabolic phenotype associated with differentiation of the 3T3-L1 cell line has been studied using gas chromatography-mass spectrometry, (1)H nuclear magnetic resonance spectroscopy, liquid chromatography-mass spectrometry, direct infusion-mass spectrometry, and 13C substrate labeling in conjunction with multivariate statistics. The changes in metabolite concentrations at distinct periods during differentiation have been defined including alterations in the TCA cycle, glycolysis, the production of odd chain fatty acids by alpha-oxidation, fatty acid synthesis, fatty acid desaturation, polyamine biosynthesis, and trans-esterification to produce complex lipids. The metabolic changes induced during differentiation of the 3T3-L1 cell line were then compared with the metabolic differences between pre- and postdifferentiation primary adipocytes. These metabolic alterations reflect the changing role of the 3T3-L1 cells during differentiation, as well as possibly providing metabolic triggers to stimulate the processes which occur during differentiation.


Nature | 2015

Regulation of mitochondrial morphology and function by stearoylation of TFR1

Deniz Senyilmaz; Sam Virtue; Xiaojun Xu; Chong Yew Tan; Julian L. Griffin; Aubry K. Miller; Antonio Vidal-Puig; Aurelio A. Teleman

Mitochondria are involved in a variety of cellular functions, including ATP production, amino acid and lipid biogenesis and breakdown, signalling and apoptosis. Mitochondrial dysfunction has been linked to neurodegenerative diseases, cancer and ageing. Although transcriptional mechanisms that regulate mitochondrial abundance are known, comparatively little is known about how mitochondrial function is regulated. Here we identify the metabolite stearic acid (C18:0) and human transferrin receptor 1 (TFR1; also known as TFRC) as mitochondrial regulators. We elucidate a signalling pathway whereby C18:0 stearoylates TFR1, thereby inhibiting its activation of JNK signalling. This leads to reduced ubiquitination of mitofusin via HUWE1, thereby promoting mitochondrial fusion and function. We find that animal cells are poised to respond to both increases and decreases in C18:0 levels, with increased C18:0 dietary intake boosting mitochondrial fusion in vivo. Intriguingly, dietary C18:0 supplementation can counteract the mitochondrial dysfunction caused by genetic defects such as loss of the Parkinson’s disease genes Pink or Parkin in Drosophila. This work identifies the metabolite C18:0 as a signalling molecule regulating mitochondrial function in response to diet.


International Journal of Obesity | 2010

Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity.

Claire Lagathu; Constantinos Christodoulides; Chong Yew Tan; Sam Virtue; Matthias Laudes; Mark Campbell; Ko Ishikawa; Francisco B. Ortega; Francisco J. Tinahones; José-Manuel Fernández-Real; Matej Orešič; Jaswinder K. Sethi; Antonio Vidal-Puig

Aim:The Wnt/β-catenin signaling network offers potential targets to diagnose and uncouple obesity from its metabolic complications. In this study, we investigate the role of the Wnt antagonist, secreted frizzled-related protein 1 (SFRP1), in promoting adipogenesis in vitro and adipose tissue expansion in vivo.Methods:We use a combination of human and murine, in vivo and in vitro models of adipogenesis, adipose tissue expansion and obesity-related metabolic syndrome to profile the involvement of SFRP1.Results:SFRP1 is expressed in both murine and human mature adipocytes. The expression of SFRP1 is induced during in vitro adipogenesis, and SFRP1 is preferentially expressed in mature adipocytes in human adipose tissue. Constitutive ectopic expression of SFRP1 is proadipogenic and inhibits the Wnt/β-catenin signaling pathway. In vivo endogenous levels of adipose SFRP1 are regulated in line with proadipogenic states. However, in longitudinal studies of high-fat-diet-fed mice, we observed a dynamic temporal but biphasic regulation of endogenous SFRP1. In agreement with this profile, we observed that SFRP1 expression in human tissues peaks in patients with mild obesity and gradually falls in morbidly obese subjects.Conclusions:Our results suggest that SFRP1 is an endogenous modulator of Wnt/β-catenin signaling and participates in the paracrine regulation of human adipogenesis. The reduced adipose expression of SFRP1 in morbid obesity and its knock-on effect to prevent further adipose tissue expansion may contribute to the development of metabolic complications in these individuals.


Cell Metabolism | 2012

Below Thermoneutrality, Changes in Activity Do Not Drive Changes in Total Daily Energy Expenditure between Groups of Mice

Sam Virtue; Patrick Even; Antonio Vidal-Puig

Summary In this study we investigated the relationship between activity and energy expenditure (EE) in mice. By determining the relationship between activity and EE over a 24 hr period in an individual mouse, activity was calculated to account for 26.6% ± 1.1% of total EE at 30°C. However, when comparing across multiple mice, only 9.53% ± 1.1% of EE from activity appeared to be independent of other components involved in the thermogenic response, suggesting other metabolic processes may mask the contribution of activity to EE. In line with this concept, below thermoneutrality mice still expended a substantial amount of energy on activity; however, at 24°C, 20°C, or 5°C, no independent effect of EE from activity on total daily EE could be detected. Overall these results suggest that when studying mice at temperatures below thermoneutrality, activity is unlikely to explain differences in EE between groups of animals.


PLOS ONE | 2011

Genome-Wide Profiling of MicroRNAs in Adipose Mesenchymal Stem Cell Differentiation and Mouse Models of Obesity

Lena Bengestrate; Sam Virtue; Mark Campbell; Antonio Vidal-Puig; Dirk Hadaschik; Peter Hahn; Wolfgang Bielke

In recent years, there has been accumulating evidence that microRNAs are key regulator molecules of gene expression. The cellular processes that are regulated by microRNAs include e.g. cell proliferation, programmed cell death and cell differentiation. Adipocyte differentiation is a highly regulated cellular process for which several important regulating factors have been discovered, but still not all are known to fully understand the underlying mechanisms. In the present study, we analyzed the expression of 597 microRNAs during the differentiation of mouse mesenchymal stem cells into terminally differentiated adipocytes by real-time RT-PCR. In total, 66 miRNAs were differentially expressed in mesenchymal stem cell-derived adipocytes compared to the undifferentiated progenitor cells. To further study the regulation of these 66 miRNAs in white adipose tissue in vivo and their dependence on PPARγ activity, mouse models of genetically or diet induced obesity as well as a mouse line expressing a dominant negative PPARγ mutant were employed.

Collaboration


Dive into the Sam Virtue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gema Medina-Gomez

King Juan Carlos University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge